# competitive-programming-library

This documentation is automatically generated by online-judge-verify-helper

View the Project on GitHub kmyk/competitive-programming-library

# Euler Tour (subtree queries, with commutative monoids) (data_structure/euler_tour_subtree_query.hpp)

## Operations

• $\mathtt{vertex\unicode{95}set}(x, b)$: 頂点 $x$ の重みを $a_x \gets b$ と更新する。
• $\mathtt{vertex\unicode{95}get}(x)$: 頂点 $x$ の重み $a_x$ を計算する。
• $\mathtt{subtree\unicode{95}get}(x, y)$: 頂点 $x$ を根とする部分木に属する頂点の重みの総和 $\sum _ {y ~\text{is a descendent of}~ x} a_y$ を計算する。

## Code

#pragma once
#include <cassert>
#include <vector>
#include "utils/macros.hpp"
#include "graph/euler_tour_preorder.hpp"
#include "data_structure/segment_tree.hpp"

/**
* @brief Euler Tour (subtree queries, with commutative monoids)
* @docs data_structure/euler_tour_subtree_query.md
*/
template <class CommutativeMonoid>
class euler_tour_subtree_query {
typedef typename CommutativeMonoid::value_type value_type;
segment_tree<CommutativeMonoid> data;
std::vector<int> left, right;

public:
euler_tour_subtree_query(const std::vector<std::vector<int> > & g, int root, const CommutativeMonoid & mon_ = CommutativeMonoid())
: data(g.size(), mon_) {
std::vector<int> tour;
do_euler_tour_preorder(g, root, tour, left, right);
}
template <class InputIterator>
euler_tour_subtree_query(const std::vector<std::vector<int> > & g, int root, InputIterator first, InputIterator last, const CommutativeMonoid & mon_ = CommutativeMonoid())
: data(std::distance(first, last), mon_) {
assert ((int)g.size() == std::distance(first, last));
std::vector<int> tour;
do_euler_tour_preorder(g, root, tour, left, right);
REP (x, g.size()) {
data.unsafe_point_set(left[x], *(first ++));
}
data.unsafe_rebuild();
}

void vertex_set(int x, value_type a) {
assert (0 <= x and x < (int)left.size());
return data.point_set(left[x], a);
}
value_type vertex_get(int x) {
assert (0 <= x and x < (int)left.size());
return data.point_get(left[x]);
}
value_type subtree_get(int x) {
assert (0 <= x and x < (int)left.size());
return data.range_get(left[x], right[x]);
}
};



#line 2 "data_structure/euler_tour_subtree_query.hpp"
#include <cassert>
#include <vector>
#line 2 "utils/macros.hpp"
#define REP(i, n) for (int i = 0; (i) < (int)(n); ++ (i))
#define REP3(i, m, n) for (int i = (m); (i) < (int)(n); ++ (i))
#define REP_R(i, n) for (int i = (int)(n) - 1; (i) >= 0; -- (i))
#define REP3R(i, m, n) for (int i = (int)(n) - 1; (i) >= (int)(m); -- (i))
#define ALL(x) std::begin(x), std::end(x)
#line 2 "graph/euler_tour_preorder.hpp"
#include <functional>
#line 4 "graph/euler_tour_preorder.hpp"

/**
* @brief Euler Tour (preorder)
* @arg g must be a rooted tree, directed or undirected
*/
void do_euler_tour_preorder(std::vector<std::vector<int> > const & g, int root, std::vector<int> & tour, std::vector<int> & left, std::vector<int> & right) {
int n = g.size();
tour.clear();
left.assign(n, -1);
right.assign(n, -1);
std::function<void (int, int)> go = [&](int x, int parent) {
left[x] = tour.size();
tour.push_back(x);
for (int y : g[x]) if (y != parent) {
go(y, x);
}
right[x] = tour.size();
};
go(root, -1);
}
#line 2 "data_structure/segment_tree.hpp"
#include <algorithm>
#line 6 "data_structure/segment_tree.hpp"

/**
* @brief Segment Tree / セグメント木 (monoids, 完全二分木)
* @docs data_structure/segment_tree.md
* @tparam Monoid (commutativity is not required)
*/
template <class Monoid>
struct segment_tree {
typedef typename Monoid::value_type value_type;
const Monoid mon;
int n;
std::vector<value_type> a;
segment_tree() = default;
segment_tree(int n_, const Monoid & mon_ = Monoid()) : mon(mon_) {
n = 1; while (n < n_) n *= 2;
a.resize(2 * n - 1, mon.unit());
}
void point_set(int i, value_type b) {  // 0-based
assert (0 <= i and i < n);
a[i + n - 1] = b;
for (i = (i + n) / 2; i > 0; i /= 2) {  // 1-based
a[i - 1] = mon.mult(a[2 * i - 1], a[2 * i]);
}
}
value_type range_get(int l, int r) {  // 0-based, [l, r)
assert (0 <= l and l <= r and r <= n);
value_type lacc = mon.unit(), racc = mon.unit();
for (l += n, r += n; l < r; l /= 2, r /= 2) {  // 1-based loop, 2x faster than recursion
if (l % 2 == 1) lacc = mon.mult(lacc, a[(l ++) - 1]);
if (r % 2 == 1) racc = mon.mult(a[(-- r) - 1], racc);
}
return mon.mult(lacc, racc);
}

value_type point_get(int i) {  // 0-based
assert (0 <= i and i < n);
return a[i + n - 1];
}

/**
* @brief a fast & semigroup-friendly version constructor
* @note $O(n)$
*/
template <class InputIterator>
segment_tree(InputIterator first, InputIterator last, const Monoid & mon_ = Monoid()) : mon(mon_) {
int size = std::distance(first, last);
n = 1; while (n < size) n *= 2;
a.resize(2 * n - 1, mon.unit());
std::copy(first, last, a.begin() + (n - 1));
unsafe_rebuild();
}
/**
* @brief update a leaf node without updating ancestors
* @note $O(1)$
*/
void unsafe_point_set(int i, value_type b) {  // 0-based
assert (0 <= i and i < n);
a[i + n - 1] = b;
}
/**
* @brief re-build non-leaf nodes from leaf nodes
* @note $O(n)$
*/
void unsafe_rebuild() {
REP_R (i, n - 1) {
a[i] = mon.mult(a[2 * i + 1], a[2 * i + 2]);
}
}
};
#line 7 "data_structure/euler_tour_subtree_query.hpp"

/**
* @brief Euler Tour (subtree queries, with commutative monoids)
* @docs data_structure/euler_tour_subtree_query.md
*/
template <class CommutativeMonoid>
class euler_tour_subtree_query {
typedef typename CommutativeMonoid::value_type value_type;
segment_tree<CommutativeMonoid> data;
std::vector<int> left, right;

public:
euler_tour_subtree_query(const std::vector<std::vector<int> > & g, int root, const CommutativeMonoid & mon_ = CommutativeMonoid())
: data(g.size(), mon_) {
std::vector<int> tour;
do_euler_tour_preorder(g, root, tour, left, right);
}
template <class InputIterator>
euler_tour_subtree_query(const std::vector<std::vector<int> > & g, int root, InputIterator first, InputIterator last, const CommutativeMonoid & mon_ = CommutativeMonoid())
: data(std::distance(first, last), mon_) {
assert ((int)g.size() == std::distance(first, last));
std::vector<int> tour;
do_euler_tour_preorder(g, root, tour, left, right);
REP (x, g.size()) {
data.unsafe_point_set(left[x], *(first ++));
}
data.unsafe_rebuild();
}

void vertex_set(int x, value_type a) {
assert (0 <= x and x < (int)left.size());
return data.point_set(left[x], a);
}
value_type vertex_get(int x) {
assert (0 <= x and x < (int)left.size());
return data.point_get(left[x]);
}
value_type subtree_get(int x) {
assert (0 <= x and x < (int)left.size());
return data.range_get(left[x], right[x]);
}
};