This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub kmyk/competitive-programming-library
#include "data_structure/euler_tour_subtree_query.hpp"
根付き木 $T$ であってそれぞれの頂点 $x$ に可換 monoid 重み $a_x \in M$ が乗ったものがあるとする。頂点数を $N$ として均し $O(\log N)$ で次が処理できる。
#pragma once #include <cassert> #include <vector> #include "../utils/macros.hpp" #include "../graph/euler_tour_preorder.hpp" #include "../data_structure/segment_tree.hpp" /** * @brief Euler Tour (subtree queries, with commutative monoids) * @docs data_structure/euler_tour_subtree_query.md */ template <class CommutativeMonoid> class euler_tour_subtree_query { typedef typename CommutativeMonoid::value_type value_type; segment_tree<CommutativeMonoid> data; std::vector<int> left, right; public: euler_tour_subtree_query(const std::vector<std::vector<int> > & g, int root, const CommutativeMonoid & mon_ = CommutativeMonoid()) : data(g.size(), mon_) { std::vector<int> tour; do_euler_tour_preorder(g, root, tour, left, right); } template <class InputIterator> euler_tour_subtree_query(const std::vector<std::vector<int> > & g, int root, InputIterator first, InputIterator last, const CommutativeMonoid & mon_ = CommutativeMonoid()) : data(std::distance(first, last), mon_) { assert ((int)g.size() == std::distance(first, last)); std::vector<int> tour; do_euler_tour_preorder(g, root, tour, left, right); REP (x, g.size()) { data.unsafe_point_set(left[x], *(first ++)); } data.unsafe_rebuild(); } void vertex_set(int x, value_type a) { assert (0 <= x and x < (int)left.size()); return data.point_set(left[x], a); } value_type vertex_get(int x) { assert (0 <= x and x < (int)left.size()); return data.point_get(left[x]); } value_type subtree_get(int x) { assert (0 <= x and x < (int)left.size()); return data.range_get(left[x], right[x]); } };
#line 2 "data_structure/euler_tour_subtree_query.hpp" #include <cassert> #include <vector> #line 2 "utils/macros.hpp" #define REP(i, n) for (int i = 0; (i) < (int)(n); ++ (i)) #define REP3(i, m, n) for (int i = (m); (i) < (int)(n); ++ (i)) #define REP_R(i, n) for (int i = (int)(n) - 1; (i) >= 0; -- (i)) #define REP3R(i, m, n) for (int i = (int)(n) - 1; (i) >= (int)(m); -- (i)) #define ALL(x) std::begin(x), std::end(x) #line 2 "graph/euler_tour_preorder.hpp" #include <functional> #line 4 "graph/euler_tour_preorder.hpp" /** * @brief Euler Tour (preorder) * @arg g must be a rooted tree, directed or undirected */ void do_euler_tour_preorder(std::vector<std::vector<int> > const & g, int root, std::vector<int> & tour, std::vector<int> & left, std::vector<int> & right) { int n = g.size(); tour.clear(); left.assign(n, -1); right.assign(n, -1); std::function<void (int, int)> go = [&](int x, int parent) { left[x] = tour.size(); tour.push_back(x); for (int y : g[x]) if (y != parent) { go(y, x); } right[x] = tour.size(); }; go(root, -1); } #line 2 "data_structure/segment_tree.hpp" #include <algorithm> #line 6 "data_structure/segment_tree.hpp" /** * @brief Segment Tree / セグメント木 (monoids, 完全二分木) * @docs data_structure/segment_tree.md * @tparam Monoid (commutativity is not required) */ template <class Monoid> struct segment_tree { typedef typename Monoid::value_type value_type; Monoid mon; int n; std::vector<value_type> a; segment_tree() = default; segment_tree(int n_, const Monoid & mon_ = Monoid()) : mon(mon_) { n = 1; while (n < n_) n *= 2; a.resize(2 * n - 1, mon.unit()); } void point_set(int i, value_type b) { // 0-based assert (0 <= i and i < n); a[i + n - 1] = b; for (i = (i + n) / 2; i > 0; i /= 2) { // 1-based a[i - 1] = mon.mult(a[2 * i - 1], a[2 * i]); } } value_type range_get(int l, int r) { // 0-based, [l, r) assert (0 <= l and l <= r and r <= n); value_type lacc = mon.unit(), racc = mon.unit(); for (l += n, r += n; l < r; l /= 2, r /= 2) { // 1-based loop, 2x faster than recursion if (l % 2 == 1) lacc = mon.mult(lacc, a[(l ++) - 1]); if (r % 2 == 1) racc = mon.mult(a[(-- r) - 1], racc); } return mon.mult(lacc, racc); } value_type point_get(int i) { // 0-based assert (0 <= i and i < n); return a[i + n - 1]; } /** * @note O(min(n, (r - l) log n)) */ void range_set(int l, int r, value_type b) { assert (0 <= l and l <= r and r <= n); range_set(0, 0, n, l, r, b); } void range_set(int i, int il, int ir, int l, int r, value_type b) { if (l <= il and ir <= r and ir - il == 1) { // 0-based a[i] = b; } else if (ir <= l or r <= il) { // nop } else { range_set(2 * i + 1, il, (il + ir) / 2, l, r, b); range_set(2 * i + 2, (il + ir) / 2, ir, l, r, b); a[i] = mon.mult(a[2 * i + 1], a[2 * i + 2]); } } /** * @brief a fast & semigroup-friendly version constructor * @note $O(n)$ */ template <class InputIterator> segment_tree(InputIterator first, InputIterator last, const Monoid & mon_ = Monoid()) : mon(mon_) { int size = std::distance(first, last); n = 1; while (n < size) n *= 2; a.resize(2 * n - 1, mon.unit()); std::copy(first, last, a.begin() + (n - 1)); unsafe_rebuild(); } /** * @brief update a leaf node without updating ancestors * @note $O(1)$ */ void unsafe_point_set(int i, value_type b) { // 0-based assert (0 <= i and i < n); a[i + n - 1] = b; } /** * @brief re-build non-leaf nodes from leaf nodes * @note $O(n)$ */ void unsafe_rebuild() { REP_R (i, n - 1) { a[i] = mon.mult(a[2 * i + 1], a[2 * i + 2]); } } }; #line 7 "data_structure/euler_tour_subtree_query.hpp" /** * @brief Euler Tour (subtree queries, with commutative monoids) * @docs data_structure/euler_tour_subtree_query.md */ template <class CommutativeMonoid> class euler_tour_subtree_query { typedef typename CommutativeMonoid::value_type value_type; segment_tree<CommutativeMonoid> data; std::vector<int> left, right; public: euler_tour_subtree_query(const std::vector<std::vector<int> > & g, int root, const CommutativeMonoid & mon_ = CommutativeMonoid()) : data(g.size(), mon_) { std::vector<int> tour; do_euler_tour_preorder(g, root, tour, left, right); } template <class InputIterator> euler_tour_subtree_query(const std::vector<std::vector<int> > & g, int root, InputIterator first, InputIterator last, const CommutativeMonoid & mon_ = CommutativeMonoid()) : data(std::distance(first, last), mon_) { assert ((int)g.size() == std::distance(first, last)); std::vector<int> tour; do_euler_tour_preorder(g, root, tour, left, right); REP (x, g.size()) { data.unsafe_point_set(left[x], *(first ++)); } data.unsafe_rebuild(); } void vertex_set(int x, value_type a) { assert (0 <= x and x < (int)left.size()); return data.point_set(left[x], a); } value_type vertex_get(int x) { assert (0 <= x and x < (int)left.size()); return data.point_get(left[x]); } value_type subtree_get(int x) { assert (0 <= x and x < (int)left.size()); return data.range_get(left[x], right[x]); } };