This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub kmyk/competitive-programming-library
#define PROBLEM "https://judge.yosupo.jp/problem/scc" #include "../graph/strongly_connected_components.hpp" #include "../graph/quotient_graph.hpp" #include "../graph/topological_sort.hpp" #include "../utils/macros.hpp" #include <cassert> #include <cstdio> #include <vector> using namespace std; int main() { // input int n, m; scanf("%d%d", &n, &m); vector<vector<int> > g(n); REP (i, m) { int a, b; scanf("%d%d", &a, &b); g[a].push_back(b); } // solve int size; vector<int> component_of; tie(size, component_of) = decompose_to_strongly_connected_components(g); vector<vector<int> > component(size); REP (i, n) { component[component_of[i]].push_back(i); } vector<vector<int> > h = make_quotient_graph(g, size, component_of); vector<int> order = topological_sort(h); assert (order.size() == size); // output printf("%d\n", size); for (int a : order) { printf("%d", (int)component[a].size()); for (int i : component[a]) { printf(" %d", i); } printf("\n"); } return 0; }
#line 1 "graph/strongly_connected_components.yosupo.test.cpp" #define PROBLEM "https://judge.yosupo.jp/problem/scc" #line 2 "graph/strongly_connected_components.hpp" #include <functional> #include <utility> #include <vector> #line 2 "utils/macros.hpp" #define REP(i, n) for (int i = 0; (i) < (int)(n); ++ (i)) #define REP3(i, m, n) for (int i = (m); (i) < (int)(n); ++ (i)) #define REP_R(i, n) for (int i = (int)(n) - 1; (i) >= 0; -- (i)) #define REP3R(i, m, n) for (int i = (int)(n) - 1; (i) >= (int)(m); -- (i)) #define ALL(x) std::begin(x), std::end(x) #line 4 "graph/transpose_graph.hpp" /** * @param g is an adjacent list of a digraph * @note $O(V + E)$ * @see https://en.wikipedia.org/wiki/Transpose_graph */ std::vector<std::vector<int> > make_transpose_graph(std::vector<std::vector<int> > const & g) { int n = g.size(); std::vector<std::vector<int> > h(n); REP (i, n) { for (int j : g[i]) { h[j].push_back(i); } } return h; } #line 7 "graph/strongly_connected_components.hpp" /** * @brief strongly connected components decomposition, Kosaraju's algorithm / 強連結成分分解 * @return the pair (the number k of components, the function from vertices of g to components) * @param g is an adjacent list of a digraph * @param g_rev is the transpose graph of g * @note $O(V + E)$ */ std::pair<int, std::vector<int> > decompose_to_strongly_connected_components(const std::vector<std::vector<int> > & g, const std::vector<std::vector<int> > & g_rev) { int n = g.size(); std::vector<int> acc; { std::vector<bool> used(n); std::function<void (int)> dfs = [&](int i) { used[i] = true; for (int j : g[i]) if (not used[j]) dfs(j); acc.push_back(i); }; REP (i,n) if (not used[i]) dfs(i); reverse(ALL(acc)); } int size = 0; std::vector<int> component_of(n); { std::vector<bool> used(n); std::function<void (int)> rdfs = [&](int i) { used[i] = true; component_of[i] = size; for (int j : g_rev[i]) if (not used[j]) rdfs(j); }; for (int i : acc) if (not used[i]) { rdfs(i); ++ size; } } return { size, move(component_of) }; } std::pair<int, std::vector<int> > decompose_to_strongly_connected_components(const std::vector<std::vector<int> > & g) { return decompose_to_strongly_connected_components(g, make_transpose_graph(g)); } #line 5 "graph/quotient_graph.hpp" /** * @param g is an adjacent list of a digraph * @param size is the size of equivalence classes * @param component_of is the map from original vertices to equivalence classes * @note $O(V + E)$ * @see https://en.wikipedia.org/wiki/Quotient_graph */ std::vector<std::vector<int> > make_quotient_graph(const std::vector<std::vector<int> > & g, int size, const std::vector<int> & component_of) { int n = g.size(); std::vector<std::vector<int> > h(size); REP (i, n) for (int j : g[i]) { if (component_of[i] != component_of[j]) { h[component_of[i]].push_back(component_of[j]); } } REP (k, size) { std::sort(ALL(h[k])); h[k].erase(std::unique(ALL(h[k])), h[k].end()); } return h; } #line 2 "graph/topological_sort.hpp" #include <algorithm> #line 6 "graph/topological_sort.hpp" /** * @brief topological sort * @return a list of vertices which sorted topologically * @note the empty list is returned if cycles exist * @note $O(V + E)$ */ std::vector<int> topological_sort(const std::vector<std::vector<int> > & g) { int n = g.size(); std::vector<int> order; std::vector<char> used(n); std::function<bool (int)> go = [&](int i) { used[i] = 1; // in stack for (int j : g[i]) { if (used[j] == 1) return true; if (not used[j]) { if (go(j)) return true; } } used[i] = 2; // completely used order.push_back(i); return false; }; REP (i, n) if (not used[i]) { if (go(i)) return std::vector<int>(); } std::reverse(ALL(order)); return order; } #line 6 "graph/strongly_connected_components.yosupo.test.cpp" #include <cassert> #include <cstdio> #line 9 "graph/strongly_connected_components.yosupo.test.cpp" using namespace std; int main() { // input int n, m; scanf("%d%d", &n, &m); vector<vector<int> > g(n); REP (i, m) { int a, b; scanf("%d%d", &a, &b); g[a].push_back(b); } // solve int size; vector<int> component_of; tie(size, component_of) = decompose_to_strongly_connected_components(g); vector<vector<int> > component(size); REP (i, n) { component[component_of[i]].push_back(i); } vector<vector<int> > h = make_quotient_graph(g, size, component_of); vector<int> order = topological_sort(h); assert (order.size() == size); // output printf("%d\n", size); for (int a : order) { printf("%d", (int)component[a].size()); for (int i : component[a]) { printf(" %d", i); } printf("\n"); } return 0; }