This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub kmyk/competitive-programming-library
#include "graph/quotient_graph.hpp"
#pragma once #include <vector> #include "../graph/transpose_graph.hpp" #include "../utils/macros.hpp" /** * @param g is an adjacent list of a digraph * @param size is the size of equivalence classes * @param component_of is the map from original vertices to equivalence classes * @note $O(V + E)$ * @see https://en.wikipedia.org/wiki/Quotient_graph */ std::vector<std::vector<int> > make_quotient_graph(const std::vector<std::vector<int> > & g, int size, const std::vector<int> & component_of) { int n = g.size(); std::vector<std::vector<int> > h(size); REP (i, n) for (int j : g[i]) { if (component_of[i] != component_of[j]) { h[component_of[i]].push_back(component_of[j]); } } REP (k, size) { std::sort(ALL(h[k])); h[k].erase(std::unique(ALL(h[k])), h[k].end()); } return h; }
#line 2 "graph/quotient_graph.hpp" #include <vector> #line 2 "utils/macros.hpp" #define REP(i, n) for (int i = 0; (i) < (int)(n); ++ (i)) #define REP3(i, m, n) for (int i = (m); (i) < (int)(n); ++ (i)) #define REP_R(i, n) for (int i = (int)(n) - 1; (i) >= 0; -- (i)) #define REP3R(i, m, n) for (int i = (int)(n) - 1; (i) >= (int)(m); -- (i)) #define ALL(x) std::begin(x), std::end(x) #line 4 "graph/transpose_graph.hpp" /** * @param g is an adjacent list of a digraph * @note $O(V + E)$ * @see https://en.wikipedia.org/wiki/Transpose_graph */ std::vector<std::vector<int> > make_transpose_graph(std::vector<std::vector<int> > const & g) { int n = g.size(); std::vector<std::vector<int> > h(n); REP (i, n) { for (int j : g[i]) { h[j].push_back(i); } } return h; } #line 5 "graph/quotient_graph.hpp" /** * @param g is an adjacent list of a digraph * @param size is the size of equivalence classes * @param component_of is the map from original vertices to equivalence classes * @note $O(V + E)$ * @see https://en.wikipedia.org/wiki/Quotient_graph */ std::vector<std::vector<int> > make_quotient_graph(const std::vector<std::vector<int> > & g, int size, const std::vector<int> & component_of) { int n = g.size(); std::vector<std::vector<int> > h(size); REP (i, n) for (int j : g[i]) { if (component_of[i] != component_of[j]) { h[component_of[i]].push_back(component_of[j]); } } REP (k, size) { std::sort(ALL(h[k])); h[k].erase(std::unique(ALL(h[k])), h[k].end()); } return h; }