This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub kmyk/competitive-programming-library
#define PROBLEM "https://judge.yosupo.jp/problem/range_affine_range_sum" #include "../data_structure/lazy_propagation_segment_tree.hpp" #include "../monoids/plus_count.hpp" #include "../monoids/linear_function.hpp" #include "../monoids/linear_function_plus_count_action.hpp" #include "../modulus/mint.hpp" #include "../utils/macros.hpp" #include <cstdio> #include <utility> #include <vector> using namespace std; constexpr int MOD = 998244353; int main() { int n, q; scanf("%d%d", &n, &q); vector<pair<mint<MOD>, int> > a(n); REP (i, n) { int a_i; scanf("%d", &a_i); a[i].first = a_i; a[i].second = 1; } lazy_propagation_segment_tree<plus_count_monoid<mint<MOD> >, linear_function_monoid<mint<MOD> >, linear_function_plus_count_action<mint<MOD> > > segtree(ALL(a)); while (q --) { int t; scanf("%d", &t); if (t == 0) { int l, r, b, c; scanf("%d%d%d%d", &l, &r, &b, &c); pair<mint<MOD>, mint<MOD> > f(b, c); segtree.range_apply(l, r, f); } else if (t == 1) { int l, r; scanf("%d%d", &l, &r); mint<MOD> answer = segtree.range_get(l, r).first; printf("%d\n", answer.value); } } return 0; }
#line 1 "data_structure/lazy_propagation_segment_tree.range_affine_range_sum.test.cpp" #define PROBLEM "https://judge.yosupo.jp/problem/range_affine_range_sum" #line 2 "data_structure/lazy_propagation_segment_tree.hpp" #include <algorithm> #include <cassert> #include <type_traits> #include <vector> #line 2 "utils/macros.hpp" #define REP(i, n) for (int i = 0; (i) < (int)(n); ++ (i)) #define REP3(i, m, n) for (int i = (m); (i) < (int)(n); ++ (i)) #define REP_R(i, n) for (int i = (int)(n) - 1; (i) >= 0; -- (i)) #define REP3R(i, m, n) for (int i = (int)(n) - 1; (i) >= (int)(m); -- (i)) #define ALL(x) std::begin(x), std::end(x) #line 7 "data_structure/lazy_propagation_segment_tree.hpp" /** * @brief Lazy Propagation Segment Tree / 遅延伝播セグメント木 (monoids, 完全二分木) * @docs data_structure/lazy_propagation_segment_tree.md * @tparam MonoidX is a monoid * @tparam MonoidF is a monoid * @tparam Action is a function phi : F * X -> X where the partial applied phi(f, -) : X -> X is a homomorphism on X */ template <class MonoidX, class MonoidF, class Action> struct lazy_propagation_segment_tree { static_assert (std::is_invocable_r<typename MonoidX::value_type, Action, typename MonoidF::value_type, typename MonoidX::value_type>::value, ""); typedef typename MonoidX::value_type value_type; typedef typename MonoidF::value_type operator_type; MonoidX mon_x; MonoidF mon_f; Action act; int n; std::vector<value_type> a; std::vector<operator_type> f; lazy_propagation_segment_tree() = default; lazy_propagation_segment_tree(int n_, const MonoidX & mon_x_ = MonoidX(), const MonoidF & mon_f_ = MonoidF(), const Action & act_ = Action()) : mon_x(mon_x_), mon_f(mon_f_), act(act_) { n = 1; while (n < n_) n *= 2; a.resize(2 * n - 1, mon_x.unit()); f.resize(n - 1, mon_f.unit()); } template <class InputIterator> lazy_propagation_segment_tree(InputIterator first, InputIterator last, const MonoidX & mon_x_ = MonoidX(), const MonoidF & mon_f_ = MonoidF(), const Action & act_ = Action()) : mon_x(mon_x_), mon_f(mon_f_), act(act_) { int size = std::distance(first, last); n = 1; while (n < size) n *= 2; a.resize(2 * n - 1, mon_x.unit()); f.resize(n - 1, mon_f.unit()); std::copy(first, last, a.begin() + (n - 1)); REP_R (i, n - 1) { a[i] = mon_x.mult(a[2 * i + 1], a[2 * i + 2]); } } void point_set(int i, value_type b) { range_set(i, i + 1, b); } /** * @note O(min(n, (r - l) log n)) */ void range_set(int l, int r, value_type b) { assert (0 <= l and l <= r and r <= n); range_set(0, 0, n, l, r, b); } void range_set(int i, int il, int ir, int l, int r, value_type b) { if (l <= il and ir <= r and ir - il == 1) { // 0-based a[i] = b; } else if (ir <= l or r <= il) { // nop } else { range_apply(2 * i + 1, il, (il + ir) / 2, 0, n, f[i]); range_apply(2 * i + 2, (il + ir) / 2, ir, 0, n, f[i]); f[i] = mon_f.unit(); range_set(2 * i + 1, il, (il + ir) / 2, l, r, b); range_set(2 * i + 2, (il + ir) / 2, ir, l, r, b); a[i] = mon_x.mult(a[2 * i + 1], a[2 * i + 2]); } } void point_apply(int i, operator_type g) { range_apply(i, i + 1, g); } void range_apply(int l, int r, operator_type g) { assert (0 <= l and l <= r and r <= n); range_apply(0, 0, n, l, r, g); } void range_apply(int i, int il, int ir, int l, int r, operator_type g) { if (l <= il and ir <= r) { // 0-based a[i] = act(g, a[i]); if (i < f.size()) f[i] = mon_f.mult(g, f[i]); } else if (ir <= l or r <= il) { // nop } else { range_apply(2 * i + 1, il, (il + ir) / 2, 0, n, f[i]); range_apply(2 * i + 2, (il + ir) / 2, ir, 0, n, f[i]); f[i] = mon_f.unit(); // unnecessary if the oprator monoid is commutative range_apply(2 * i + 1, il, (il + ir) / 2, l, r, g); range_apply(2 * i + 2, (il + ir) / 2, ir, l, r, g); a[i] = mon_x.mult(a[2 * i + 1], a[2 * i + 2]); } } value_type point_get(int i) { return range_get(i, i + 1); } value_type range_get(int l, int r) { assert (0 <= l and l <= r and r <= n); if (l == 0 and r == n) return a[0]; value_type lacc = mon_x.unit(), racc = mon_x.unit(); for (int l1 = (l += n), r1 = (r += n) - 1; l1 > 1; l /= 2, r /= 2, l1 /= 2, r1 /= 2) { // 1-based loop, 2x faster than recursion if (l < r) { if (l % 2 == 1) lacc = mon_x.mult(lacc, a[(l ++) - 1]); if (r % 2 == 1) racc = mon_x.mult(a[(-- r) - 1], racc); } lacc = act(f[l1 / 2 - 1], lacc); racc = act(f[r1 / 2 - 1], racc); } return mon_x.mult(lacc, racc); } }; #line 2 "monoids/plus_count.hpp" #include <utility> template <class T> struct plus_count_monoid { typedef std::pair<T, int> value_type; value_type unit() const { return std::make_pair(T(), 0); } value_type mult(value_type a, value_type b) const { return std::make_pair(a.first + b.first, a.second + b.second); } static value_type make(T a) { return std::make_pair(a, 1); } }; #line 3 "monoids/linear_function.hpp" template <class CommutativeRing> struct linear_function_monoid { typedef std::pair<CommutativeRing, CommutativeRing> value_type; linear_function_monoid() = default; value_type unit() const { return std::make_pair(1, 0); } value_type mult(value_type g, value_type f) const { CommutativeRing fst = g.first * f.first; CommutativeRing snd = g.second + g.first * f.second; return std::make_pair(fst, snd); } }; #line 4 "monoids/linear_function_plus_count_action.hpp" /** * @note lazy_propagation_segment_tree<plus_count_monoid<T>, linear_function_monoid<T>, linear_function_plus_count_action<T> > */ template <class T> struct linear_function_plus_count_action { typename plus_count_monoid<T>::value_type operator () (typename linear_function_monoid<T>::value_type f, typename plus_count_monoid<T>::value_type x) const { return std::make_pair(f.first * x.first + f.second * x.second, x.second); } }; #line 2 "modulus/mint.hpp" #include <cstdint> #include <iostream> #line 4 "modulus/modpow.hpp" inline int32_t modpow(uint_fast64_t x, uint64_t k, int32_t MOD) { assert (/* 0 <= x and */ x < (uint_fast64_t)MOD); uint_fast64_t y = 1; for (; k; k >>= 1) { if (k & 1) (y *= x) %= MOD; (x *= x) %= MOD; } assert (/* 0 <= y and */ y < (uint_fast64_t)MOD); return y; } #line 5 "modulus/modinv.hpp" inline int32_t modinv_nocheck(int32_t value, int32_t MOD) { assert (0 <= value and value < MOD); if (value == 0) return -1; int64_t a = value, b = MOD; int64_t x = 0, y = 1; for (int64_t u = 1, v = 0; a; ) { int64_t q = b / a; x -= q * u; std::swap(x, u); y -= q * v; std::swap(y, v); b -= q * a; std::swap(b, a); } if (not (value * x + MOD * y == b and b == 1)) return -1; if (x < 0) x += MOD; assert (0 <= x and x < MOD); return x; } inline int32_t modinv(int32_t x, int32_t MOD) { int32_t y = modinv_nocheck(x, MOD); assert (y != -1); return y; } #line 6 "modulus/mint.hpp" /** * @brief quotient ring / 剰余環 $\mathbb{Z}/n\mathbb{Z}$ */ template <int32_t MOD> struct mint { int32_t value; mint() : value() {} mint(int64_t value_) : value(value_ < 0 ? value_ % MOD + MOD : value_ >= MOD ? value_ % MOD : value_) {} mint(int32_t value_, std::nullptr_t) : value(value_) {} explicit operator bool() const { return value; } inline mint<MOD> operator + (mint<MOD> other) const { return mint<MOD>(*this) += other; } inline mint<MOD> operator - (mint<MOD> other) const { return mint<MOD>(*this) -= other; } inline mint<MOD> operator * (mint<MOD> other) const { return mint<MOD>(*this) *= other; } inline mint<MOD> & operator += (mint<MOD> other) { this->value += other.value; if (this->value >= MOD) this->value -= MOD; return *this; } inline mint<MOD> & operator -= (mint<MOD> other) { this->value -= other.value; if (this->value < 0) this->value += MOD; return *this; } inline mint<MOD> & operator *= (mint<MOD> other) { this->value = (uint_fast64_t)this->value * other.value % MOD; return *this; } inline mint<MOD> operator - () const { return mint<MOD>(this->value ? MOD - this->value : 0, nullptr); } inline bool operator == (mint<MOD> other) const { return value == other.value; } inline bool operator != (mint<MOD> other) const { return value != other.value; } inline mint<MOD> pow(uint64_t k) const { return mint<MOD>(modpow(value, k, MOD), nullptr); } inline mint<MOD> inv() const { return mint<MOD>(modinv(value, MOD), nullptr); } inline mint<MOD> operator / (mint<MOD> other) const { return *this * other.inv(); } inline mint<MOD> & operator /= (mint<MOD> other) { return *this *= other.inv(); } }; template <int32_t MOD> mint<MOD> operator + (int64_t value, mint<MOD> n) { return mint<MOD>(value) + n; } template <int32_t MOD> mint<MOD> operator - (int64_t value, mint<MOD> n) { return mint<MOD>(value) - n; } template <int32_t MOD> mint<MOD> operator * (int64_t value, mint<MOD> n) { return mint<MOD>(value) * n; } template <int32_t MOD> mint<MOD> operator / (int64_t value, mint<MOD> n) { return mint<MOD>(value) / n; } template <int32_t MOD> std::istream & operator >> (std::istream & in, mint<MOD> & n) { int64_t value; in >> value; n = value; return in; } template <int32_t MOD> std::ostream & operator << (std::ostream & out, mint<MOD> n) { return out << n.value; } #line 8 "data_structure/lazy_propagation_segment_tree.range_affine_range_sum.test.cpp" #include <cstdio> #line 11 "data_structure/lazy_propagation_segment_tree.range_affine_range_sum.test.cpp" using namespace std; constexpr int MOD = 998244353; int main() { int n, q; scanf("%d%d", &n, &q); vector<pair<mint<MOD>, int> > a(n); REP (i, n) { int a_i; scanf("%d", &a_i); a[i].first = a_i; a[i].second = 1; } lazy_propagation_segment_tree<plus_count_monoid<mint<MOD> >, linear_function_monoid<mint<MOD> >, linear_function_plus_count_action<mint<MOD> > > segtree(ALL(a)); while (q --) { int t; scanf("%d", &t); if (t == 0) { int l, r, b, c; scanf("%d%d%d%d", &l, &r, &b, &c); pair<mint<MOD>, mint<MOD> > f(b, c); segtree.range_apply(l, r, f); } else if (t == 1) { int l, r; scanf("%d%d", &l, &r); mint<MOD> answer = segtree.range_get(l, r).first; printf("%d\n", answer.value); } } return 0; }