This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub kmyk/competitive-programming-library
#include "data_structure/lazy_propagation_segment_tree.hpp"
次があるとする:
このとき monoid $M$ の要素の列 $a = (a_0, a_1, \dots, a _ {n - 1}) \in M^n$ に対し、次が $O(\log N)$ で処理可能:
他にも:
#pragma once #include <algorithm> #include <cassert> #include <type_traits> #include <vector> #include "../utils/macros.hpp" /** * @brief Lazy Propagation Segment Tree / 遅延伝播セグメント木 (monoids, 完全二分木) * @docs data_structure/lazy_propagation_segment_tree.md * @tparam MonoidX is a monoid * @tparam MonoidF is a monoid * @tparam Action is a function phi : F * X -> X where the partial applied phi(f, -) : X -> X is a homomorphism on X */ template <class MonoidX, class MonoidF, class Action> struct lazy_propagation_segment_tree { static_assert (std::is_invocable_r<typename MonoidX::value_type, Action, typename MonoidF::value_type, typename MonoidX::value_type>::value, ""); typedef typename MonoidX::value_type value_type; typedef typename MonoidF::value_type operator_type; MonoidX mon_x; MonoidF mon_f; Action act; int n; std::vector<value_type> a; std::vector<operator_type> f; lazy_propagation_segment_tree() = default; lazy_propagation_segment_tree(int n_, const MonoidX & mon_x_ = MonoidX(), const MonoidF & mon_f_ = MonoidF(), const Action & act_ = Action()) : mon_x(mon_x_), mon_f(mon_f_), act(act_) { n = 1; while (n < n_) n *= 2; a.resize(2 * n - 1, mon_x.unit()); f.resize(n - 1, mon_f.unit()); } template <class InputIterator> lazy_propagation_segment_tree(InputIterator first, InputIterator last, const MonoidX & mon_x_ = MonoidX(), const MonoidF & mon_f_ = MonoidF(), const Action & act_ = Action()) : mon_x(mon_x_), mon_f(mon_f_), act(act_) { int size = std::distance(first, last); n = 1; while (n < size) n *= 2; a.resize(2 * n - 1, mon_x.unit()); f.resize(n - 1, mon_f.unit()); std::copy(first, last, a.begin() + (n - 1)); REP_R (i, n - 1) { a[i] = mon_x.mult(a[2 * i + 1], a[2 * i + 2]); } } void point_set(int i, value_type b) { range_set(i, i + 1, b); } /** * @note O(min(n, (r - l) log n)) */ void range_set(int l, int r, value_type b) { assert (0 <= l and l <= r and r <= n); range_set(0, 0, n, l, r, b); } void range_set(int i, int il, int ir, int l, int r, value_type b) { if (l <= il and ir <= r and ir - il == 1) { // 0-based a[i] = b; } else if (ir <= l or r <= il) { // nop } else { range_apply(2 * i + 1, il, (il + ir) / 2, 0, n, f[i]); range_apply(2 * i + 2, (il + ir) / 2, ir, 0, n, f[i]); f[i] = mon_f.unit(); range_set(2 * i + 1, il, (il + ir) / 2, l, r, b); range_set(2 * i + 2, (il + ir) / 2, ir, l, r, b); a[i] = mon_x.mult(a[2 * i + 1], a[2 * i + 2]); } } void point_apply(int i, operator_type g) { range_apply(i, i + 1, g); } void range_apply(int l, int r, operator_type g) { assert (0 <= l and l <= r and r <= n); range_apply(0, 0, n, l, r, g); } void range_apply(int i, int il, int ir, int l, int r, operator_type g) { if (l <= il and ir <= r) { // 0-based a[i] = act(g, a[i]); if (i < f.size()) f[i] = mon_f.mult(g, f[i]); } else if (ir <= l or r <= il) { // nop } else { range_apply(2 * i + 1, il, (il + ir) / 2, 0, n, f[i]); range_apply(2 * i + 2, (il + ir) / 2, ir, 0, n, f[i]); f[i] = mon_f.unit(); // unnecessary if the oprator monoid is commutative range_apply(2 * i + 1, il, (il + ir) / 2, l, r, g); range_apply(2 * i + 2, (il + ir) / 2, ir, l, r, g); a[i] = mon_x.mult(a[2 * i + 1], a[2 * i + 2]); } } value_type point_get(int i) { return range_get(i, i + 1); } value_type range_get(int l, int r) { assert (0 <= l and l <= r and r <= n); if (l == 0 and r == n) return a[0]; value_type lacc = mon_x.unit(), racc = mon_x.unit(); for (int l1 = (l += n), r1 = (r += n) - 1; l1 > 1; l /= 2, r /= 2, l1 /= 2, r1 /= 2) { // 1-based loop, 2x faster than recursion if (l < r) { if (l % 2 == 1) lacc = mon_x.mult(lacc, a[(l ++) - 1]); if (r % 2 == 1) racc = mon_x.mult(a[(-- r) - 1], racc); } lacc = act(f[l1 / 2 - 1], lacc); racc = act(f[r1 / 2 - 1], racc); } return mon_x.mult(lacc, racc); } };
#line 2 "data_structure/lazy_propagation_segment_tree.hpp" #include <algorithm> #include <cassert> #include <type_traits> #include <vector> #line 2 "utils/macros.hpp" #define REP(i, n) for (int i = 0; (i) < (int)(n); ++ (i)) #define REP3(i, m, n) for (int i = (m); (i) < (int)(n); ++ (i)) #define REP_R(i, n) for (int i = (int)(n) - 1; (i) >= 0; -- (i)) #define REP3R(i, m, n) for (int i = (int)(n) - 1; (i) >= (int)(m); -- (i)) #define ALL(x) std::begin(x), std::end(x) #line 7 "data_structure/lazy_propagation_segment_tree.hpp" /** * @brief Lazy Propagation Segment Tree / 遅延伝播セグメント木 (monoids, 完全二分木) * @docs data_structure/lazy_propagation_segment_tree.md * @tparam MonoidX is a monoid * @tparam MonoidF is a monoid * @tparam Action is a function phi : F * X -> X where the partial applied phi(f, -) : X -> X is a homomorphism on X */ template <class MonoidX, class MonoidF, class Action> struct lazy_propagation_segment_tree { static_assert (std::is_invocable_r<typename MonoidX::value_type, Action, typename MonoidF::value_type, typename MonoidX::value_type>::value, ""); typedef typename MonoidX::value_type value_type; typedef typename MonoidF::value_type operator_type; MonoidX mon_x; MonoidF mon_f; Action act; int n; std::vector<value_type> a; std::vector<operator_type> f; lazy_propagation_segment_tree() = default; lazy_propagation_segment_tree(int n_, const MonoidX & mon_x_ = MonoidX(), const MonoidF & mon_f_ = MonoidF(), const Action & act_ = Action()) : mon_x(mon_x_), mon_f(mon_f_), act(act_) { n = 1; while (n < n_) n *= 2; a.resize(2 * n - 1, mon_x.unit()); f.resize(n - 1, mon_f.unit()); } template <class InputIterator> lazy_propagation_segment_tree(InputIterator first, InputIterator last, const MonoidX & mon_x_ = MonoidX(), const MonoidF & mon_f_ = MonoidF(), const Action & act_ = Action()) : mon_x(mon_x_), mon_f(mon_f_), act(act_) { int size = std::distance(first, last); n = 1; while (n < size) n *= 2; a.resize(2 * n - 1, mon_x.unit()); f.resize(n - 1, mon_f.unit()); std::copy(first, last, a.begin() + (n - 1)); REP_R (i, n - 1) { a[i] = mon_x.mult(a[2 * i + 1], a[2 * i + 2]); } } void point_set(int i, value_type b) { range_set(i, i + 1, b); } /** * @note O(min(n, (r - l) log n)) */ void range_set(int l, int r, value_type b) { assert (0 <= l and l <= r and r <= n); range_set(0, 0, n, l, r, b); } void range_set(int i, int il, int ir, int l, int r, value_type b) { if (l <= il and ir <= r and ir - il == 1) { // 0-based a[i] = b; } else if (ir <= l or r <= il) { // nop } else { range_apply(2 * i + 1, il, (il + ir) / 2, 0, n, f[i]); range_apply(2 * i + 2, (il + ir) / 2, ir, 0, n, f[i]); f[i] = mon_f.unit(); range_set(2 * i + 1, il, (il + ir) / 2, l, r, b); range_set(2 * i + 2, (il + ir) / 2, ir, l, r, b); a[i] = mon_x.mult(a[2 * i + 1], a[2 * i + 2]); } } void point_apply(int i, operator_type g) { range_apply(i, i + 1, g); } void range_apply(int l, int r, operator_type g) { assert (0 <= l and l <= r and r <= n); range_apply(0, 0, n, l, r, g); } void range_apply(int i, int il, int ir, int l, int r, operator_type g) { if (l <= il and ir <= r) { // 0-based a[i] = act(g, a[i]); if (i < f.size()) f[i] = mon_f.mult(g, f[i]); } else if (ir <= l or r <= il) { // nop } else { range_apply(2 * i + 1, il, (il + ir) / 2, 0, n, f[i]); range_apply(2 * i + 2, (il + ir) / 2, ir, 0, n, f[i]); f[i] = mon_f.unit(); // unnecessary if the oprator monoid is commutative range_apply(2 * i + 1, il, (il + ir) / 2, l, r, g); range_apply(2 * i + 2, (il + ir) / 2, ir, l, r, g); a[i] = mon_x.mult(a[2 * i + 1], a[2 * i + 2]); } } value_type point_get(int i) { return range_get(i, i + 1); } value_type range_get(int l, int r) { assert (0 <= l and l <= r and r <= n); if (l == 0 and r == n) return a[0]; value_type lacc = mon_x.unit(), racc = mon_x.unit(); for (int l1 = (l += n), r1 = (r += n) - 1; l1 > 1; l /= 2, r /= 2, l1 /= 2, r1 /= 2) { // 1-based loop, 2x faster than recursion if (l < r) { if (l % 2 == 1) lacc = mon_x.mult(lacc, a[(l ++) - 1]); if (r % 2 == 1) racc = mon_x.mult(a[(-- r) - 1], racc); } lacc = act(f[l1 / 2 - 1], lacc); racc = act(f[r1 / 2 - 1], racc); } return mon_x.mult(lacc, racc); } };