This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub kmyk/competitive-programming-library
#define PROBLEM "https://judge.yosupo.jp/problem/range_affine_range_sum"
#include "../data_structure/lazy_propagation_segment_tree.hpp"
#include "../monoids/plus_count.hpp"
#include "../monoids/linear_function.hpp"
#include "../monoids/linear_function_plus_count_action.hpp"
#include "../modulus/mint.hpp"
#include "../utils/macros.hpp"
#include <cstdio>
#include <utility>
#include <vector>
using namespace std;
constexpr int MOD = 998244353;
int main() {
int n, q; scanf("%d%d", &n, &q);
vector<pair<mint<MOD>, int> > a(n);
REP (i, n) {
int a_i; scanf("%d", &a_i);
a[i].first = a_i;
a[i].second = 1;
}
lazy_propagation_segment_tree<plus_count_monoid<mint<MOD> >, linear_function_monoid<mint<MOD> >, linear_function_plus_count_action<mint<MOD> > > segtree(ALL(a));
while (q --) {
int t; scanf("%d", &t);
if (t == 0) {
int l, r, b, c; scanf("%d%d%d%d", &l, &r, &b, &c);
pair<mint<MOD>, mint<MOD> > f(b, c);
segtree.range_apply(l, r, f);
} else if (t == 1) {
int l, r; scanf("%d%d", &l, &r);
mint<MOD> answer = segtree.range_get(l, r).first;
printf("%d\n", answer.value);
}
}
return 0;
}
#line 1 "data_structure/lazy_propagation_segment_tree.range_affine_range_sum.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/range_affine_range_sum"
#line 2 "data_structure/lazy_propagation_segment_tree.hpp"
#include <algorithm>
#include <cassert>
#include <type_traits>
#include <vector>
#line 2 "utils/macros.hpp"
#define REP(i, n) for (int i = 0; (i) < (int)(n); ++ (i))
#define REP3(i, m, n) for (int i = (m); (i) < (int)(n); ++ (i))
#define REP_R(i, n) for (int i = (int)(n) - 1; (i) >= 0; -- (i))
#define REP3R(i, m, n) for (int i = (int)(n) - 1; (i) >= (int)(m); -- (i))
#define ALL(x) std::begin(x), std::end(x)
#line 7 "data_structure/lazy_propagation_segment_tree.hpp"
/**
* @brief Lazy Propagation Segment Tree / 遅延伝播セグメント木 (monoids, 完全二分木)
* @docs data_structure/lazy_propagation_segment_tree.md
* @tparam MonoidX is a monoid
* @tparam MonoidF is a monoid
* @tparam Action is a function phi : F * X -> X where the partial applied phi(f, -) : X -> X is a homomorphism on X
*/
template <class MonoidX, class MonoidF, class Action>
struct lazy_propagation_segment_tree {
static_assert (std::is_invocable_r<typename MonoidX::value_type, Action, typename MonoidF::value_type, typename MonoidX::value_type>::value, "");
typedef typename MonoidX::value_type value_type;
typedef typename MonoidF::value_type operator_type;
MonoidX mon_x;
MonoidF mon_f;
Action act;
int n;
std::vector<value_type> a;
std::vector<operator_type> f;
lazy_propagation_segment_tree() = default;
lazy_propagation_segment_tree(int n_, const MonoidX & mon_x_ = MonoidX(), const MonoidF & mon_f_ = MonoidF(), const Action & act_ = Action())
: mon_x(mon_x_), mon_f(mon_f_), act(act_) {
n = 1; while (n < n_) n *= 2;
a.resize(2 * n - 1, mon_x.unit());
f.resize(n - 1, mon_f.unit());
}
template <class InputIterator>
lazy_propagation_segment_tree(InputIterator first, InputIterator last, const MonoidX & mon_x_ = MonoidX(), const MonoidF & mon_f_ = MonoidF(), const Action & act_ = Action())
: mon_x(mon_x_), mon_f(mon_f_), act(act_) {
int size = std::distance(first, last);
n = 1; while (n < size) n *= 2;
a.resize(2 * n - 1, mon_x.unit());
f.resize(n - 1, mon_f.unit());
std::copy(first, last, a.begin() + (n - 1));
REP_R (i, n - 1) {
a[i] = mon_x.mult(a[2 * i + 1], a[2 * i + 2]);
}
}
void point_set(int i, value_type b) {
range_set(i, i + 1, b);
}
/**
* @note O(min(n, (r - l) log n))
*/
void range_set(int l, int r, value_type b) {
assert (0 <= l and l <= r and r <= n);
range_set(0, 0, n, l, r, b);
}
void range_set(int i, int il, int ir, int l, int r, value_type b) {
if (l <= il and ir <= r and ir - il == 1) { // 0-based
a[i] = b;
} else if (ir <= l or r <= il) {
// nop
} else {
range_apply(2 * i + 1, il, (il + ir) / 2, 0, n, f[i]);
range_apply(2 * i + 2, (il + ir) / 2, ir, 0, n, f[i]);
f[i] = mon_f.unit();
range_set(2 * i + 1, il, (il + ir) / 2, l, r, b);
range_set(2 * i + 2, (il + ir) / 2, ir, l, r, b);
a[i] = mon_x.mult(a[2 * i + 1], a[2 * i + 2]);
}
}
void point_apply(int i, operator_type g) {
range_apply(i, i + 1, g);
}
void range_apply(int l, int r, operator_type g) {
assert (0 <= l and l <= r and r <= n);
range_apply(0, 0, n, l, r, g);
}
void range_apply(int i, int il, int ir, int l, int r, operator_type g) {
if (l <= il and ir <= r) { // 0-based
a[i] = act(g, a[i]);
if (i < f.size()) f[i] = mon_f.mult(g, f[i]);
} else if (ir <= l or r <= il) {
// nop
} else {
range_apply(2 * i + 1, il, (il + ir) / 2, 0, n, f[i]);
range_apply(2 * i + 2, (il + ir) / 2, ir, 0, n, f[i]);
f[i] = mon_f.unit(); // unnecessary if the oprator monoid is commutative
range_apply(2 * i + 1, il, (il + ir) / 2, l, r, g);
range_apply(2 * i + 2, (il + ir) / 2, ir, l, r, g);
a[i] = mon_x.mult(a[2 * i + 1], a[2 * i + 2]);
}
}
value_type point_get(int i) {
return range_get(i, i + 1);
}
value_type range_get(int l, int r) {
assert (0 <= l and l <= r and r <= n);
if (l == 0 and r == n) return a[0];
value_type lacc = mon_x.unit(), racc = mon_x.unit();
for (int l1 = (l += n), r1 = (r += n) - 1; l1 > 1; l /= 2, r /= 2, l1 /= 2, r1 /= 2) { // 1-based loop, 2x faster than recursion
if (l < r) {
if (l % 2 == 1) lacc = mon_x.mult(lacc, a[(l ++) - 1]);
if (r % 2 == 1) racc = mon_x.mult(a[(-- r) - 1], racc);
}
lacc = act(f[l1 / 2 - 1], lacc);
racc = act(f[r1 / 2 - 1], racc);
}
return mon_x.mult(lacc, racc);
}
};
#line 2 "monoids/plus_count.hpp"
#include <utility>
template <class T>
struct plus_count_monoid {
typedef std::pair<T, int> value_type;
value_type unit() const {
return std::make_pair(T(), 0);
}
value_type mult(value_type a, value_type b) const {
return std::make_pair(a.first + b.first, a.second + b.second);
}
static value_type make(T a) {
return std::make_pair(a, 1);
}
};
#line 3 "monoids/linear_function.hpp"
template <class CommutativeRing>
struct linear_function_monoid {
typedef std::pair<CommutativeRing, CommutativeRing> value_type;
linear_function_monoid() = default;
value_type unit() const {
return std::make_pair(1, 0);
}
value_type mult(value_type g, value_type f) const {
CommutativeRing fst = g.first * f.first;
CommutativeRing snd = g.second + g.first * f.second;
return std::make_pair(fst, snd);
}
};
#line 4 "monoids/linear_function_plus_count_action.hpp"
/**
* @note lazy_propagation_segment_tree<plus_count_monoid<T>, linear_function_monoid<T>, linear_function_plus_count_action<T> >
*/
template <class T>
struct linear_function_plus_count_action {
typename plus_count_monoid<T>::value_type operator () (typename linear_function_monoid<T>::value_type f, typename plus_count_monoid<T>::value_type x) const {
return std::make_pair(f.first * x.first + f.second * x.second, x.second);
}
};
#line 2 "modulus/mint.hpp"
#include <cstdint>
#include <iostream>
#line 4 "modulus/modpow.hpp"
inline int32_t modpow(uint_fast64_t x, uint64_t k, int32_t MOD) {
assert (/* 0 <= x and */ x < (uint_fast64_t)MOD);
uint_fast64_t y = 1;
for (; k; k >>= 1) {
if (k & 1) (y *= x) %= MOD;
(x *= x) %= MOD;
}
assert (/* 0 <= y and */ y < (uint_fast64_t)MOD);
return y;
}
#line 5 "modulus/modinv.hpp"
inline int32_t modinv_nocheck(int32_t value, int32_t MOD) {
assert (0 <= value and value < MOD);
if (value == 0) return -1;
int64_t a = value, b = MOD;
int64_t x = 0, y = 1;
for (int64_t u = 1, v = 0; a; ) {
int64_t q = b / a;
x -= q * u; std::swap(x, u);
y -= q * v; std::swap(y, v);
b -= q * a; std::swap(b, a);
}
if (not (value * x + MOD * y == b and b == 1)) return -1;
if (x < 0) x += MOD;
assert (0 <= x and x < MOD);
return x;
}
inline int32_t modinv(int32_t x, int32_t MOD) {
int32_t y = modinv_nocheck(x, MOD);
assert (y != -1);
return y;
}
#line 6 "modulus/mint.hpp"
/**
* @brief quotient ring / 剰余環 $\mathbb{Z}/n\mathbb{Z}$
*/
template <int32_t MOD>
struct mint {
int32_t value;
mint() : value() {}
mint(int64_t value_) : value(value_ < 0 ? value_ % MOD + MOD : value_ >= MOD ? value_ % MOD : value_) {}
mint(int32_t value_, std::nullptr_t) : value(value_) {}
explicit operator bool() const { return value; }
inline mint<MOD> operator + (mint<MOD> other) const { return mint<MOD>(*this) += other; }
inline mint<MOD> operator - (mint<MOD> other) const { return mint<MOD>(*this) -= other; }
inline mint<MOD> operator * (mint<MOD> other) const { return mint<MOD>(*this) *= other; }
inline mint<MOD> & operator += (mint<MOD> other) { this->value += other.value; if (this->value >= MOD) this->value -= MOD; return *this; }
inline mint<MOD> & operator -= (mint<MOD> other) { this->value -= other.value; if (this->value < 0) this->value += MOD; return *this; }
inline mint<MOD> & operator *= (mint<MOD> other) { this->value = (uint_fast64_t)this->value * other.value % MOD; return *this; }
inline mint<MOD> operator - () const { return mint<MOD>(this->value ? MOD - this->value : 0, nullptr); }
inline bool operator == (mint<MOD> other) const { return value == other.value; }
inline bool operator != (mint<MOD> other) const { return value != other.value; }
inline mint<MOD> pow(uint64_t k) const { return mint<MOD>(modpow(value, k, MOD), nullptr); }
inline mint<MOD> inv() const { return mint<MOD>(modinv(value, MOD), nullptr); }
inline mint<MOD> operator / (mint<MOD> other) const { return *this * other.inv(); }
inline mint<MOD> & operator /= (mint<MOD> other) { return *this *= other.inv(); }
};
template <int32_t MOD> mint<MOD> operator + (int64_t value, mint<MOD> n) { return mint<MOD>(value) + n; }
template <int32_t MOD> mint<MOD> operator - (int64_t value, mint<MOD> n) { return mint<MOD>(value) - n; }
template <int32_t MOD> mint<MOD> operator * (int64_t value, mint<MOD> n) { return mint<MOD>(value) * n; }
template <int32_t MOD> mint<MOD> operator / (int64_t value, mint<MOD> n) { return mint<MOD>(value) / n; }
template <int32_t MOD> std::istream & operator >> (std::istream & in, mint<MOD> & n) { int64_t value; in >> value; n = value; return in; }
template <int32_t MOD> std::ostream & operator << (std::ostream & out, mint<MOD> n) { return out << n.value; }
#line 8 "data_structure/lazy_propagation_segment_tree.range_affine_range_sum.test.cpp"
#include <cstdio>
#line 11 "data_structure/lazy_propagation_segment_tree.range_affine_range_sum.test.cpp"
using namespace std;
constexpr int MOD = 998244353;
int main() {
int n, q; scanf("%d%d", &n, &q);
vector<pair<mint<MOD>, int> > a(n);
REP (i, n) {
int a_i; scanf("%d", &a_i);
a[i].first = a_i;
a[i].second = 1;
}
lazy_propagation_segment_tree<plus_count_monoid<mint<MOD> >, linear_function_monoid<mint<MOD> >, linear_function_plus_count_action<mint<MOD> > > segtree(ALL(a));
while (q --) {
int t; scanf("%d", &t);
if (t == 0) {
int l, r, b, c; scanf("%d%d%d%d", &l, &r, &b, &c);
pair<mint<MOD>, mint<MOD> > f(b, c);
segtree.range_apply(l, r, f);
} else if (t == 1) {
int l, r; scanf("%d%d", &l, &r);
mint<MOD> answer = segtree.range_get(l, r).first;
printf("%d\n", answer.value);
}
}
return 0;
}