# competitive-programming-library

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub kmyk/competitive-programming-library

# graph/kruskal.aoj.test.cpp

## Code

#define PROBLEM "http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=ALDS1_12_A"
#include "graph/kruskal.hpp"

#include "utils/macros.hpp"
#include <cstdio>
#include <vector>
using namespace std;

int main() {
// input
int n; scanf("%d", &n);
vector<tuple<int, int, long long> > edges;
REP (x, n) {
REP (y, n) {
long long a; scanf("%lld", &a);
if (a != -1) {
edges.emplace_back(x, y, a);
}
}
}

// solve
vector<int> mst = compute_minimum_spanning_tree(n, edges);
for (int i : mst) {
}

// output
return 0;
}



#line 1 "graph/kruskal.aoj.test.cpp"
#define PROBLEM "http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=ALDS1_12_A"
#line 2 "data_structure/union_find_tree.hpp"
#include <vector>

/**
* @brief Union-Find Tree
* @docs data_structure/union_find_tree.md
* @note union-by-size + path-compression
*/
struct union_find_tree {
std::vector<int> data;
union_find_tree() = default;
explicit union_find_tree(std::size_t n) : data(n, -1) {}
bool is_root(int i) { return data[i] < 0; }
int find_root(int i) { return is_root(i) ? i : (data[i] = find_root(data[i])); }
int tree_size(int i) { return - data[find_root(i)]; }
int unite_trees(int i, int j) {
i = find_root(i); j = find_root(j);
if (i != j) {
if (tree_size(i) < tree_size(j)) std::swap(i, j);
data[i] += data[j];
data[j] = i;
}
return i;
}
bool is_same(int i, int j) { return find_root(i) == find_root(j); }
};
#line 2 "utils/macros.hpp"
#define REP(i, n) for (int i = 0; (i) < (int)(n); ++ (i))
#define REP3(i, m, n) for (int i = (m); (i) < (int)(n); ++ (i))
#define REP_R(i, n) for (int i = (int)(n) - 1; (i) >= 0; -- (i))
#define REP3R(i, m, n) for (int i = (int)(n) - 1; (i) >= (int)(m); -- (i))
#define ALL(x) std::begin(x), std::end(x)
#line 4 "graph/kruskal.hpp"
#include <algorithm>
#include <numeric>
#include <tuple>
#line 8 "graph/kruskal.hpp"

/**
* @brief minimum spanning tree / 最小全域木 (Kruskal's method)
* @note $O(E \log E)$
* @note it becomes a forest if the given graph is not connected
* @return a list of indices of edges
*/
template <typename T>
std::vector<int> compute_minimum_spanning_tree(int n, std::vector<std::tuple<int, int, T> > edges) {
std::vector<int> order(edges.size());
std::iota(ALL(order), 0);
std::sort(ALL(order), [&](int i, int j) {
return std::make_pair(std::get<2>(edges[i]), i) < std::make_pair(std::get<2>(edges[j]), j);
});
std::vector<int> tree;
union_find_tree uft(n);
for (int i : order) {
int x = std::get<0>(edges[i]);
int y = std::get<1>(edges[i]);
if (not uft.is_same(x, y)) {
uft.unite_trees(x, y);
tree.push_back(i);
}
}
return tree;
}
#line 3 "graph/kruskal.aoj.test.cpp"

#line 5 "graph/kruskal.aoj.test.cpp"
#include <cstdio>
#line 7 "graph/kruskal.aoj.test.cpp"
using namespace std;

int main() {
// input
int n; scanf("%d", &n);
vector<tuple<int, int, long long> > edges;
REP (x, n) {
REP (y, n) {
long long a; scanf("%lld", &a);
if (a != -1) {
edges.emplace_back(x, y, a);
}
}
}

// solve
vector<int> mst = compute_minimum_spanning_tree(n, edges);