competitive-programming-library

This documentation is automatically generated by online-judge-verify-helper

View the Project on GitHub kmyk/competitive-programming-library

:heavy_check_mark: Union-Find Tree (data_structure/union_find_tree.hpp)

Back to top page

概要

頂点数 $N$ で辺数 $0$ の無向グラフ $G = (V, E)$ に対し、次が $O(\alpha(N))$ amortized (ただし $\alpha$ は Ackermann 関数の逆関数) で処理可能。

Required by

Verified with

Code

#pragma once
#include <vector>

/**
 * @brief Union-Find Tree
 * @docs data_structure/union_find_tree.md
 * @note union-by-size + path-compression
 */
struct union_find_tree {
    std::vector<int> data;
    union_find_tree() = default;
    explicit union_find_tree(std::size_t n) : data(n, -1) {}
    bool is_root(int i) { return data[i] < 0; }
    int find_root(int i) { return is_root(i) ? i : (data[i] = find_root(data[i])); }
    int tree_size(int i) { return - data[find_root(i)]; }
    int unite_trees(int i, int j) {
        i = find_root(i); j = find_root(j);
        if (i != j) {
            if (tree_size(i) < tree_size(j)) std::swap(i, j);
            data[i] += data[j];
            data[j] = i;
        }
        return i;
    }
    bool is_same(int i, int j) { return find_root(i) == find_root(j); }
};

#line 2 "data_structure/union_find_tree.hpp"
#include <vector>

/**
 * @brief Union-Find Tree
 * @docs data_structure/union_find_tree.md
 * @note union-by-size + path-compression
 */
struct union_find_tree {
    std::vector<int> data;
    union_find_tree() = default;
    explicit union_find_tree(std::size_t n) : data(n, -1) {}
    bool is_root(int i) { return data[i] < 0; }
    int find_root(int i) { return is_root(i) ? i : (data[i] = find_root(data[i])); }
    int tree_size(int i) { return - data[find_root(i)]; }
    int unite_trees(int i, int j) {
        i = find_root(i); j = find_root(j);
        if (i != j) {
            if (tree_size(i) < tree_size(j)) std::swap(i, j);
            data[i] += data[j];
            data[j] = i;
        }
        return i;
    }
    bool is_same(int i, int j) { return find_root(i) == find_root(j); }
};

Back to top page