solution

最小費用流。$O(N^2 M \sum w_j)$。

editorialにある図を見ると早いので大きく略すが、次に注意:

  • 辺の張り方について、左端はひとつずれる
  • 連続して同じクエリが来る場合は事前に潰しておかねばならない

implementation

#include <bits/stdc++.h>
#define REP(i, n) for (int i = 0; (i) < int(n); ++ (i))
#define REP_R(i, n) for (int i = int(n) - 1; (i) >= 0; -- (i))
#define ALL(x) begin(x), end(x)
using namespace std;
template <class T> using reversed_priority_queue = priority_queue<T, vector<T>, greater<T> >;
template <class T> inline void chmin(T & a, T const & b) { a = min(a, b); }

template <class T>
struct edge { int to; T cap, cost; int rev; };
template <class T>
void add_edge(vector<vector<edge<T> > > & graph, int from, int to, T cap, T cost) {
    graph[from].push_back((edge<T>) {   to, cap,  cost, int(graph[  to].size())     });
    graph[  to].push_back((edge<T>) { from,  0, - cost, int(graph[from].size()) - 1 });
}
/**
 * @brief minimum-cost flow with primal-dual method
 * @note mainly O(V^2UC) for U is the sum of capacities and C is the sum of costs. and additional O(VE) if negative edges exist
 */
template <class T>
T min_cost_flow_destructive(int src, int dst, T flow, vector<vector<edge<T> > > & graph) {
    T result = 0;
    vector<T> potential(graph.size());
    if (0 < flow) { // initialize potential when negative edges exist (slow). you can remove this if unnecessary
        fill(ALL(potential), numeric_limits<T>::max());
        potential[src] = 0;
        while (true) { // Bellman-Ford algorithm
            bool updated = false;
            REP (e_from, graph.size()) for (auto & e : graph[e_from]) if (e.cap) {
                if (potential[e_from] == numeric_limits<T>::max()) continue;
                if (potential[e.to] > potential[e_from] + e.cost) {
                    potential[e.to] = potential[e_from] + e.cost; // min
                    updated = true;
                }
            }
            if (not updated) break;
        }
    }
    while (0 < flow) {
        // update potential using dijkstra
        vector<T> distance(graph.size(), numeric_limits<T>::max()); // minimum distance
        vector<int> prev_v(graph.size()); // constitute a single-linked-list represents the flow-path
        vector<int> prev_e(graph.size());
        { // initialize distance and prev_{v,e}
            reversed_priority_queue<pair<T, int> > que; // distance * vertex
            distance[src] = 0;
            que.emplace(0, src);
            while (not que.empty()) { // Dijkstra's algorithm
                T d; int v; tie(d, v) = que.top(); que.pop();
                if (potential[v] == numeric_limits<T>::max()) continue; // for unreachable nodes
                if (distance[v] < d) continue;
                // look round the vertex
                REP (e_index, graph[v].size()) {
                    // consider updating
                    edge<T> e = graph[v][e_index];
                    int w = e.to;
                    if (potential[w] == numeric_limits<T>::max()) continue;
                    T d1 = distance[v] + e.cost + potential[v] - potential[w]; // updated distance
                    if (0 < e.cap and d1 < distance[e.to]) {
                        distance[w] = d1;
                        prev_v[w] = v;
                        prev_e[w] = e_index;
                        que.emplace(d1, w);
                    }
                }
            }
        }
        if (distance[dst] == numeric_limits<T>::max()) return -1; // no such flow
        REP (v, graph.size()) {
            if (potential[v] == numeric_limits<T>::max()) continue;
            potential[v] += distance[v];
        }
        // finish updating the potential
        // let flow on the src->dst minimum path
        T delta = flow; // capacity of the path
        for (int v = dst; v != src; v = prev_v[v]) {
            chmin(delta, graph[prev_v[v]][prev_e[v]].cap);
        }
        flow -= delta;
        result += delta * potential[dst];
        for (int v = dst; v != src; v = prev_v[v]) {
            edge<T> & e = graph[prev_v[v]][prev_e[v]]; // reference
            e.cap -= delta;
            graph[v][e.rev].cap += delta;
        }
    }
    return result;
}

constexpr int inf = 1e9 + 7;
int main() {
    // input
    int m, n, k; scanf("%d%d%d", &m, &n, &k);
    vector<int> w(n); REP (i, n) scanf("%d", &w[i]);
    vector<int> a(k);
    REP (i, k) {
        scanf("%d", &a[i]);
        -- a[i];
    }
    // solve
    a.erase(unique(ALL(a)), a.end());  // remove consecutive same elements
    k = a.size();
    int base = 0;
    vector<vector<edge<int> > > g(k);
    vector<int> last(n, -1);
    REP_R (i, k) {
        base += w[a[i]];
        if (i < k - 1) {
            add_edge(g, i, i + 1, inf, 0);
            if (last[a[i]] != -1) {
                add_edge(g, i + 1, last[a[i]], 1, - w[a[i]]);
            }
        }
        last[a[i]] = i;
    }
    int result = base + min_cost_flow_destructive(0, k - 1, m - 1, g);
    // output
    printf("%d\n", result);
    return 0;
}