I’ve noticed that, people who visit this blog are not only Japanese. So I’ll try to write solutions in English, for problems written in English.

problem

集合値関数$f : \mathbb{N} \to \mathcal{P}(\mathbb{N})$を、$f(n) = \{ 整数$n$の$10$進数表記に数字として含まれる数 \}$とする。 例えば$f(1692) = \{ 1, 2, 6, 9 \}$である。

整数$N$が与えられる。 $f(N) \cup f(2N) \cup \dots f(kN) = \{ 0, 1, 2, \dots 9 \}$となるような$kN$が存在するか判定し、存在するならば最小の$kN$を答えよ。

solution

$N = 0$ diverges. Otherwise, you should only simply count from $1 \cdot N$ to certain $k \cdot N$ (exists), until all digits appeared.

To make sure of this, you can implement it and run it for many cases.

implementation

#include <iostream>
#include <array>
#include <algorithm>
#define repeat(i,n) for (int i = 0; (i) < (n); ++(i))
typedef long long ll;
using namespace std;
void solve() {
    ll n; cin >> n;
    if (n == 0) {
        cout << "INSOMNIA" << endl;
    } else {
        array<bool,10> used = {};
        int i = 1;
        while (true) {
            for (ll t = i * n; t; t /= 10) used[t % 10] = true;
            if (not count(used.begin(), used.end(), false)) break;
            ++ i;
        }
        cout << i * n << endl;
    }
}
int main() {
    int t; cin >> t;
    repeat (i,t) {
        cout << "Case #" << i+1 << ": ";
        solve();
    }
    return 0;
}