This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub kmyk/competitive-programming-library
#include "utils/two_satisfiability.hpp"
#pragma once
#include <cassert>
#include <utility>
#include <vector>
#include "../graph/strongly_connected_components.hpp"
/**
* @brief 2-SAT ($O(N)$)
* @param n is the number of variables
* @param cnf is a proposition in a conjunctive normal form. Each literal is expressed as number $x$ s.t. $1 \le \vert x \vert \le n$
* @return a vector with the length $n$ if SAT. It's empty if UNSAT.
*/
std::vector<bool> compute_two_satisfiability(int n, const std::vector<std::pair<int, int> > & cnf) {
// make digraph
std::vector<std::vector<int> > g(2 * n);
auto index = [&](int x) {
assert (x != 0 and abs(x) <= n);
return x > 0 ? x - 1 : n - x - 1;
};
for (auto it : cnf) {
int x, y; std::tie(x, y) = it; // x or y
g[index(- x)].push_back(index(y)); // not x implies y
g[index(- y)].push_back(index(x)); // not y implies x
}
// do SCC
std::vector<int> component = decompose_to_strongly_connected_components(g).second;
std::vector<bool> valuation(n);
REP3 (x, 1, n + 1) {
if (component[index(x)] == component[index(- x)]) { // x iff not x
return std::vector<bool>(); // unsat
}
valuation[x - 1] = component[index(x)] > component[index(- x)]; // use components which indices are large
}
return valuation;
}
#line 2 "utils/two_satisfiability.hpp"
#include <cassert>
#include <utility>
#include <vector>
#line 2 "graph/strongly_connected_components.hpp"
#include <functional>
#line 2 "utils/macros.hpp"
#define REP(i, n) for (int i = 0; (i) < (int)(n); ++ (i))
#define REP3(i, m, n) for (int i = (m); (i) < (int)(n); ++ (i))
#define REP_R(i, n) for (int i = (int)(n) - 1; (i) >= 0; -- (i))
#define REP3R(i, m, n) for (int i = (int)(n) - 1; (i) >= (int)(m); -- (i))
#define ALL(x) std::begin(x), std::end(x)
#line 4 "graph/transpose_graph.hpp"
/**
* @param g is an adjacent list of a digraph
* @note $O(V + E)$
* @see https://en.wikipedia.org/wiki/Transpose_graph
*/
std::vector<std::vector<int> > make_transpose_graph(std::vector<std::vector<int> > const & g) {
int n = g.size();
std::vector<std::vector<int> > h(n);
REP (i, n) {
for (int j : g[i]) {
h[j].push_back(i);
}
}
return h;
}
#line 7 "graph/strongly_connected_components.hpp"
/**
* @brief strongly connected components decomposition, Kosaraju's algorithm / 強連結成分分解
* @return the pair (the number k of components, the function from vertices of g to components)
* @param g is an adjacent list of a digraph
* @param g_rev is the transpose graph of g
* @note $O(V + E)$
*/
std::pair<int, std::vector<int> > decompose_to_strongly_connected_components(const std::vector<std::vector<int> > & g, const std::vector<std::vector<int> > & g_rev) {
int n = g.size();
std::vector<int> acc; {
std::vector<bool> used(n);
std::function<void (int)> dfs = [&](int i) {
used[i] = true;
for (int j : g[i]) if (not used[j]) dfs(j);
acc.push_back(i);
};
REP (i,n) if (not used[i]) dfs(i);
reverse(ALL(acc));
}
int size = 0;
std::vector<int> component_of(n); {
std::vector<bool> used(n);
std::function<void (int)> rdfs = [&](int i) {
used[i] = true;
component_of[i] = size;
for (int j : g_rev[i]) if (not used[j]) rdfs(j);
};
for (int i : acc) if (not used[i]) {
rdfs(i);
++ size;
}
}
return { size, move(component_of) };
}
std::pair<int, std::vector<int> > decompose_to_strongly_connected_components(const std::vector<std::vector<int> > & g) {
return decompose_to_strongly_connected_components(g, make_transpose_graph(g));
}
#line 6 "utils/two_satisfiability.hpp"
/**
* @brief 2-SAT ($O(N)$)
* @param n is the number of variables
* @param cnf is a proposition in a conjunctive normal form. Each literal is expressed as number $x$ s.t. $1 \le \vert x \vert \le n$
* @return a vector with the length $n$ if SAT. It's empty if UNSAT.
*/
std::vector<bool> compute_two_satisfiability(int n, const std::vector<std::pair<int, int> > & cnf) {
// make digraph
std::vector<std::vector<int> > g(2 * n);
auto index = [&](int x) {
assert (x != 0 and abs(x) <= n);
return x > 0 ? x - 1 : n - x - 1;
};
for (auto it : cnf) {
int x, y; std::tie(x, y) = it; // x or y
g[index(- x)].push_back(index(y)); // not x implies y
g[index(- y)].push_back(index(x)); // not y implies x
}
// do SCC
std::vector<int> component = decompose_to_strongly_connected_components(g).second;
std::vector<bool> valuation(n);
REP3 (x, 1, n + 1) {
if (component[index(x)] == component[index(- x)]) { // x iff not x
return std::vector<bool>(); // unsat
}
valuation[x - 1] = component[index(x)] > component[index(- x)]; // use components which indices are large
}
return valuation;
}