This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub kmyk/competitive-programming-library
#include "utils/left_to_right_maxima.hpp"
#pragma once #include <stack> #include <tuple> #include <utility> #include <vector> #include "../utils/macros.hpp" #include "../data_structure/sparse_table.hpp" #include "../monoids/min.hpp" /** * @brief Length of Left-to-right Maxima (前処理 $O(n \log n)$ + $O(1)$) * @description computes the lengths of the left-to-right maxima for the given interval * @note the left-to-right maxima for a sequence $a$ means the subsubsequence of the elements $a_i$ which satisfy $\forall j \lt i. a_j \lt a_i$. */ class left_to_right_maxima { std::vector<int> depth; sparse_table<min_monoid<int> > table; public: left_to_right_maxima() = default; int operator () (int l, int r) const { assert (0 <= l and l <= r and r <= (int)depth.size()); if (l == r) return 0; return depth[l] - table.range_get(l, r) + 1; } private: left_to_right_maxima(const std::vector<int> & depth_) : depth(depth_), table(ALL(depth_)) { } public: /** * @note this is just a constructor, but is needed to specify template arguments. */ template <class T, class Comparator = std::less<T>, class RandomAccessIterator> static left_to_right_maxima construct(RandomAccessIterator first, RandomAccessIterator last, const Comparator & cmp = Comparator()) { int n = std::distance(first, last); // make a forest std::vector<int> parent(n, -1); std::stack<int> stk; REP (i, n) { while (not stk.empty() and cmp(*(first + stk.top()), *(first + i))) { parent[stk.top()] = i; stk.pop(); } stk.push(i); } // calculate depths std::vector<int> depth(n); REP_R (i, n) { if (parent[i] != -1) { depth[i] = depth[parent[i]] + 1; } } return left_to_right_maxima(depth); } };
#line 2 "utils/left_to_right_maxima.hpp" #include <stack> #include <tuple> #include <utility> #include <vector> #line 2 "utils/macros.hpp" #define REP(i, n) for (int i = 0; (i) < (int)(n); ++ (i)) #define REP3(i, m, n) for (int i = (m); (i) < (int)(n); ++ (i)) #define REP_R(i, n) for (int i = (int)(n) - 1; (i) >= 0; -- (i)) #define REP3R(i, m, n) for (int i = (int)(n) - 1; (i) >= (int)(m); -- (i)) #define ALL(x) std::begin(x), std::end(x) #line 2 "data_structure/sparse_table.hpp" #include <cassert> #line 5 "data_structure/sparse_table.hpp" /** * @brief Sparse Table (idempotent monoid) * @note the unit is required just for convenience * @note $O(N \log N)$ space */ template <class IdempotentMonoid> struct sparse_table { typedef typename IdempotentMonoid::value_type value_type; std::vector<std::vector<value_type> > table; IdempotentMonoid mon; sparse_table() = default; /** * @note $O(N \log N)$ time */ template <class InputIterator> sparse_table(InputIterator first, InputIterator last, const IdempotentMonoid & mon_ = IdempotentMonoid()) : mon(mon_) { table.emplace_back(first, last); int n = table[0].size(); int log_n = 32 - __builtin_clz(n); table.resize(log_n, std::vector<value_type>(n)); REP (k, log_n - 1) { REP (i, n) { table[k + 1][i] = i + (1ll << k) < n ? mon.mult(table[k][i], table[k][i + (1ll << k)]) : table[k][i]; } } } /** * @note $O(1)$ */ value_type range_get(int l, int r) const { if (l == r) return mon.unit(); // if there is no unit, remove this line assert (0 <= l and l < r and r <= (int)table[0].size()); int k = 31 - __builtin_clz(r - l); // log2 return mon.mult(table[k][l], table[k][r - (1ll << k)]); } }; #line 2 "monoids/min.hpp" #include <algorithm> #include <limits> template <class T> struct min_monoid { typedef T value_type; value_type unit() const { return std::numeric_limits<T>::max(); } value_type mult(value_type a, value_type b) const { return std::min(a, b); } }; #line 9 "utils/left_to_right_maxima.hpp" /** * @brief Length of Left-to-right Maxima (前処理 $O(n \log n)$ + $O(1)$) * @description computes the lengths of the left-to-right maxima for the given interval * @note the left-to-right maxima for a sequence $a$ means the subsubsequence of the elements $a_i$ which satisfy $\forall j \lt i. a_j \lt a_i$. */ class left_to_right_maxima { std::vector<int> depth; sparse_table<min_monoid<int> > table; public: left_to_right_maxima() = default; int operator () (int l, int r) const { assert (0 <= l and l <= r and r <= (int)depth.size()); if (l == r) return 0; return depth[l] - table.range_get(l, r) + 1; } private: left_to_right_maxima(const std::vector<int> & depth_) : depth(depth_), table(ALL(depth_)) { } public: /** * @note this is just a constructor, but is needed to specify template arguments. */ template <class T, class Comparator = std::less<T>, class RandomAccessIterator> static left_to_right_maxima construct(RandomAccessIterator first, RandomAccessIterator last, const Comparator & cmp = Comparator()) { int n = std::distance(first, last); // make a forest std::vector<int> parent(n, -1); std::stack<int> stk; REP (i, n) { while (not stk.empty() and cmp(*(first + stk.top()), *(first + i))) { parent[stk.top()] = i; stk.pop(); } stk.push(i); } // calculate depths std::vector<int> depth(n); REP_R (i, n) { if (parent[i] != -1) { depth[i] = depth[parent[i]] + 1; } } return left_to_right_maxima(depth); } };