This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub kmyk/competitive-programming-library
#include "utils/fast_zeta_transform.hpp"
#pragma once #include <cassert> #include <vector> #include "../number/primes.hpp" #include "../utils/macros.hpp" /** * @brief upward fast zeta transform on primes * @note $O(n \log n)$ (or, $O(n \log \log n)$ ???) * @return $b_i = \sum _ {i \mid j} a_j$ * @note $a_0, b_0$ means the greatest element */ template <class CommutativeSemiring> std::vector<typename CommutativeSemiring::value_type> upward_fast_zeta_transform_on_primes(std::vector<typename CommutativeSemiring::value_type> a, const prepared_primes & primes, const CommutativeSemiring & mon = CommutativeSemiring()) { assert (a.size() <= primes.size); if (a.empty()) return a; for (int64_t p : primes.primes) { REP3R (x, 1, (a.size() - 1) / p + 1) { a[x] = mon.mult(a[x], a[p * x]); } } REP3 (x, 1, a.size()) { a[x] = mon.mult(a[x], a[0]); } return a; }
#line 2 "utils/fast_zeta_transform.hpp" #include <cassert> #include <vector> #line 2 "number/primes.hpp" #include <algorithm> #line 4 "number/primes.hpp" #include <cstdint> #line 2 "utils/macros.hpp" #define REP(i, n) for (int i = 0; (i) < (int)(n); ++ (i)) #define REP3(i, m, n) for (int i = (m); (i) < (int)(n); ++ (i)) #define REP_R(i, n) for (int i = (int)(n) - 1; (i) >= 0; -- (i)) #define REP3R(i, m, n) for (int i = (int)(n) - 1; (i) >= (int)(m); -- (i)) #define ALL(x) std::begin(x), std::end(x) #line 7 "number/primes.hpp" struct prepared_primes { int size; std::vector<int> sieve; std::vector<int> primes; /** * @note O(size) */ prepared_primes(int size_) : size(size_) { sieve.resize(size); REP3 (p, 2, size) if (sieve[p] == 0) { primes.push_back(p); for (int k = p; k < size; k += p) { if (sieve[k] == 0) { sieve[k] = p; } } } } /** * @note let k be the length of the result, O(k) if n < size; O(\sqrt{n} + k) if size <= n < size^2 */ std::vector<int64_t> list_prime_factors(int64_t n) const { assert (1 <= n and n < (int64_t)size * size); std::vector<int64_t> result; // trial division for large part for (int p : primes) { if (n < size or n < (int64_t)p * p) { break; } while (n % p == 0) { n /= p; result.push_back(p); } } // small part if (n == 1) { // nop } else if (n < size) { while (n != 1) { result.push_back(sieve[n]); n /= sieve[n]; } } else { result.push_back(n); } assert (std::is_sorted(ALL(result))); return result; } std::vector<int64_t> list_all_factors(int64_t n) const { auto p = list_prime_factors(n); std::vector<int64_t> d; d.push_back(1); for (int l = 0; l < p.size(); ) { int r = l + 1; while (r < p.size() and p[r] == p[l]) ++ r; int n = d.size(); REP (k1, r - l) { REP (k2, n) { d.push_back(d[d.size() - n] * p[l]); } } l = r; } return d; } /** * @note O(1) if n < size; O(sqrt n) if size <= n < size^2 */ bool is_prime(int64_t n) const { assert (1 <= n and n < (int64_t)size * size); if (n < size) { return sieve[n] == n; } for (int p : primes) { if (n < (int64_t)p * p) { break; } if (n % p == 0) { return false; } } return true; } }; #line 6 "utils/fast_zeta_transform.hpp" /** * @brief upward fast zeta transform on primes * @note $O(n \log n)$ (or, $O(n \log \log n)$ ???) * @return $b_i = \sum _ {i \mid j} a_j$ * @note $a_0, b_0$ means the greatest element */ template <class CommutativeSemiring> std::vector<typename CommutativeSemiring::value_type> upward_fast_zeta_transform_on_primes(std::vector<typename CommutativeSemiring::value_type> a, const prepared_primes & primes, const CommutativeSemiring & mon = CommutativeSemiring()) { assert (a.size() <= primes.size); if (a.empty()) return a; for (int64_t p : primes.primes) { REP3R (x, 1, (a.size() - 1) / p + 1) { a[x] = mon.mult(a[x], a[p * x]); } } REP3 (x, 1, a.size()) { a[x] = mon.mult(a[x], a[0]); } return a; }