This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub kmyk/competitive-programming-library
#include "utils/dsu_on_tree.hpp"
#pragma once #include <functional> #include <stack> #include <vector> #include "../graph/subtree.hpp" #include "../utils/macros.hpp" /** * @brief DSU on tree (sack) * @arg g is a tree * @arg root * @arg add is a function object which takes a index of a vertex * @arg sub is a function object which takes a index of a vertex * @arg callback is a function object which takes a index of a vertex * @note for each x, add(x) and sub(x) are called O(log n) times * @note O(n log n) if add, sub, and callback are O(1) * @see https://codeforces.com/blog/entry/44351 * @note sub(x) can be implemented as reset(), because sub(x) is called until it becomes empty after sub(x) is called once */ template <class Add, class Sub, class Callback> void dsu_on_tree(const std::vector<std::vector<int> > & g, int root, Add & add, Sub & sub, Callback & callback) { auto info = prepare_subtree_info(g, root); auto subtree_apply = [&](int x, auto & f) { std::stack<int> stk; stk.push(x); while (not stk.empty()) { int y = stk.top(); stk.pop(); f(y); for (int z : g[y]) if (z != info[y].parent) { stk.push(z); } } }; std::function<void (int, bool)> go = [&](int x, bool keep) { // leaf if (info[x].size == 1) { add(x); callback(x); if (not keep) { sub(x); } return; } // choose the heavy child int z = *max_element(ALL(g[x]), [&](int y1, int y2) { int size1 = (y1 == info[x].parent ? -1 : info[y1].size); int size2 = (y2 == info[x].parent ? -1 : info[y2].size); return size1 < size2; }); // go light for (int y : g[x]) if (y != info[x].parent) { if (y != z) { go(y, false); } } // go heavy go(z, true); for (int y : g[x]) if (y != info[x].parent) { if (y != z) { subtree_apply(y, add); } } add(x); callback(x); if (not keep) { subtree_apply(x, sub); } }; go(root, false); }
#line 2 "utils/dsu_on_tree.hpp" #include <functional> #include <stack> #include <vector> #line 2 "graph/subtree.hpp" #include <algorithm> #line 4 "graph/subtree.hpp" struct subtree_info_t { int parent; // in the entire tree int depth; // in the entire tree int size; // of the subtree int height; // of the subtree }; /** * @brief subtree info / それぞれの部分木の size とか height とかをまとめて求めておいてくれるやつ * @arg g must be a tree * @note O(n) time * @note O(n) space on heap */ std::vector<subtree_info_t> prepare_subtree_info(std::vector<std::vector<int> > const & g, int root) { int n = g.size(); std::vector<subtree_info_t> info(n, (subtree_info_t) { -1, -1, -1, -1 }); std::vector<int> topological(n); topological[0] = root; info[root].parent = root; info[root].depth = 0; int r = 1; for (int l = 0; l < r; ++ l) { int i = topological[l]; for (int j : g[i]) if (j != info[i].parent) { topological[r ++] = j; info[j].parent = i; info[j].depth = info[i].depth + 1; } } while ((-- r) >= 0) { int i = topological[r]; info[i].size = 1; info[i].height = 0; for (int j : g[i]) if (j != info[i].parent) { info[i].size += info[j].size; info[i].height = std::max(info[i].height, info[j].height + 1); } } info[root].parent = -1; return info; } #line 2 "utils/macros.hpp" #define REP(i, n) for (int i = 0; (i) < (int)(n); ++ (i)) #define REP3(i, m, n) for (int i = (m); (i) < (int)(n); ++ (i)) #define REP_R(i, n) for (int i = (int)(n) - 1; (i) >= 0; -- (i)) #define REP3R(i, m, n) for (int i = (int)(n) - 1; (i) >= (int)(m); -- (i)) #define ALL(x) std::begin(x), std::end(x) #line 7 "utils/dsu_on_tree.hpp" /** * @brief DSU on tree (sack) * @arg g is a tree * @arg root * @arg add is a function object which takes a index of a vertex * @arg sub is a function object which takes a index of a vertex * @arg callback is a function object which takes a index of a vertex * @note for each x, add(x) and sub(x) are called O(log n) times * @note O(n log n) if add, sub, and callback are O(1) * @see https://codeforces.com/blog/entry/44351 * @note sub(x) can be implemented as reset(), because sub(x) is called until it becomes empty after sub(x) is called once */ template <class Add, class Sub, class Callback> void dsu_on_tree(const std::vector<std::vector<int> > & g, int root, Add & add, Sub & sub, Callback & callback) { auto info = prepare_subtree_info(g, root); auto subtree_apply = [&](int x, auto & f) { std::stack<int> stk; stk.push(x); while (not stk.empty()) { int y = stk.top(); stk.pop(); f(y); for (int z : g[y]) if (z != info[y].parent) { stk.push(z); } } }; std::function<void (int, bool)> go = [&](int x, bool keep) { // leaf if (info[x].size == 1) { add(x); callback(x); if (not keep) { sub(x); } return; } // choose the heavy child int z = *max_element(ALL(g[x]), [&](int y1, int y2) { int size1 = (y1 == info[x].parent ? -1 : info[y1].size); int size2 = (y2 == info[x].parent ? -1 : info[y2].size); return size1 < size2; }); // go light for (int y : g[x]) if (y != info[x].parent) { if (y != z) { go(y, false); } } // go heavy go(z, true); for (int y : g[x]) if (y != info[x].parent) { if (y != z) { subtree_apply(y, add); } } add(x); callback(x); if (not keep) { subtree_apply(x, sub); } }; go(root, false); }