This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub kmyk/competitive-programming-library
#include "string/longest_common_prefix.hpp"
#pragma once
#include <algorithm>
#include <string>
#include <vector>
#include "../string/suffix_array.hpp"
#include "../data_structure/sparse_table.hpp"
#include "../monoids/min.hpp"
/**
* @brief Longest Common Prefix / 最長共通接頭辞 (接尾辞配列, 前処理 $O(N (\log N)^2)$ + $O(1)$)
*/
class longest_common_prefix {
std::vector<int> rank;
sparse_table<min_monoid<int> > table;
void initialize(const std::string & s, const std::vector<int> & sa) {
int n = s.length();
std::vector<int> lcp(n, -1); // lcp[i] is the length of the common prefix between i-th and (i+1)-th substring of s
int h = 0;
lcp[0] = 0;
REP (i, n) {
int j = sa[rank[i] - 1];
if (h > 0) -- h;
while (j + h < n and i + h < n and s[j + h] == s[i + h]) ++ h;
lcp[rank[i] - 1] = h;
}
table = sparse_table<min_monoid<int> >(ALL(lcp));
}
public:
longest_common_prefix(const std::string & s) {
std::vector<int> sa;
compute_suffix_array(s, sa, rank);
initialize(s, sa);
}
longest_common_prefix(const std::string & s, const std::vector<int> & sa, const std::vector<int> & rank_)
: rank(rank_) {
initialize(s, sa);
}
int get(int i, int j) const {
int l = rank[i];
int r = rank[j];
if (l > r) std::swap(l, r);
int n = rank.size() - 1;
return std::min(n, table.range_get(l, r));
}
};
#line 2 "string/longest_common_prefix.hpp"
#include <algorithm>
#include <string>
#include <vector>
#line 5 "string/suffix_array.hpp"
#include <utility>
#line 2 "utils/macros.hpp"
#define REP(i, n) for (int i = 0; (i) < (int)(n); ++ (i))
#define REP3(i, m, n) for (int i = (m); (i) < (int)(n); ++ (i))
#define REP_R(i, n) for (int i = (int)(n) - 1; (i) >= 0; -- (i))
#define REP3R(i, m, n) for (int i = (int)(n) - 1; (i) >= (int)(m); -- (i))
#define ALL(x) std::begin(x), std::end(x)
#line 7 "string/suffix_array.hpp"
/**
* @brief Suffix Array / 接尾辞配列 ($O(N (\log N)^2)$, Manber & Myers)
* @arg sa[i] is the index of i-th smallest substring of s, s[sa[i], N)
* @arg rank[i] is the rank of substring s[i, N)
* @note 蟻本より
*/
void compute_suffix_array(std::string const & s, std::vector<int> & sa, std::vector<int> & rank) {
int n = s.length();
sa.resize(n + 1);
rank.resize(n + 1);
REP (i, n + 1) {
sa[i] = i;
rank[i] = i < n ? s[i] : -1;
}
auto rankf = [&](int i) {
return i <= n ? rank[i] : -1;
};
std::vector<int> nxt(n + 1);
for (int k = 1; k <= n; k <<= 1) {
auto cmp = [&](int i, int j) {
return std::make_pair(rank[i], rankf(i + k)) < std::make_pair(rank[j], rankf(j + k));
};
std::sort(sa.begin(), sa.end(), cmp);
nxt[sa[0]] = 0;
REP3 (i, 1, n + 1) {
nxt[sa[i]] = nxt[sa[i - 1]] + (cmp(sa[i - 1], sa[i]) ? 1 : 0);
}
rank.swap(nxt);
}
}
#line 2 "data_structure/sparse_table.hpp"
#include <cassert>
#line 5 "data_structure/sparse_table.hpp"
/**
* @brief Sparse Table (idempotent monoid)
* @note the unit is required just for convenience
* @note $O(N \log N)$ space
*/
template <class IdempotentMonoid>
struct sparse_table {
typedef typename IdempotentMonoid::value_type value_type;
std::vector<std::vector<value_type> > table;
IdempotentMonoid mon;
sparse_table() = default;
/**
* @note $O(N \log N)$ time
*/
template <class InputIterator>
sparse_table(InputIterator first, InputIterator last, const IdempotentMonoid & mon_ = IdempotentMonoid())
: mon(mon_) {
table.emplace_back(first, last);
int n = table[0].size();
int log_n = 32 - __builtin_clz(n);
table.resize(log_n, std::vector<value_type>(n));
REP (k, log_n - 1) {
REP (i, n) {
table[k + 1][i] = i + (1ll << k) < n ?
mon.mult(table[k][i], table[k][i + (1ll << k)]) :
table[k][i];
}
}
}
/**
* @note $O(1)$
*/
value_type range_get(int l, int r) const {
if (l == r) return mon.unit(); // if there is no unit, remove this line
assert (0 <= l and l < r and r <= (int)table[0].size());
int k = 31 - __builtin_clz(r - l); // log2
return mon.mult(table[k][l], table[k][r - (1ll << k)]);
}
};
#line 3 "monoids/min.hpp"
#include <limits>
template <class T>
struct min_monoid {
typedef T value_type;
value_type unit() const { return std::numeric_limits<T>::max(); }
value_type mult(value_type a, value_type b) const { return std::min(a, b); }
};
#line 8 "string/longest_common_prefix.hpp"
/**
* @brief Longest Common Prefix / 最長共通接頭辞 (接尾辞配列, 前処理 $O(N (\log N)^2)$ + $O(1)$)
*/
class longest_common_prefix {
std::vector<int> rank;
sparse_table<min_monoid<int> > table;
void initialize(const std::string & s, const std::vector<int> & sa) {
int n = s.length();
std::vector<int> lcp(n, -1); // lcp[i] is the length of the common prefix between i-th and (i+1)-th substring of s
int h = 0;
lcp[0] = 0;
REP (i, n) {
int j = sa[rank[i] - 1];
if (h > 0) -- h;
while (j + h < n and i + h < n and s[j + h] == s[i + h]) ++ h;
lcp[rank[i] - 1] = h;
}
table = sparse_table<min_monoid<int> >(ALL(lcp));
}
public:
longest_common_prefix(const std::string & s) {
std::vector<int> sa;
compute_suffix_array(s, sa, rank);
initialize(s, sa);
}
longest_common_prefix(const std::string & s, const std::vector<int> & sa, const std::vector<int> & rank_)
: rank(rank_) {
initialize(s, sa);
}
int get(int i, int j) const {
int l = rank[i];
int r = rank[j];
if (l > r) std::swap(l, r);
int n = rank.size() - 1;
return std::min(n, table.range_get(l, r));
}
};