competitive-programming-library

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub kmyk/competitive-programming-library

:heavy_check_mark: Longest Common Prefix / 最長共通接頭辞 (接尾辞配列, 前処理 $O(N (\log N)^2)$ + $O(1)$)
(string/longest_common_prefix.hpp)

Depends on

Verified with

Code

#pragma once
#include <algorithm>
#include <string>
#include <vector>
#include "string/suffix_array.hpp"
#include "data_structure/sparse_table.hpp"
#include "monoids/min.hpp"

/**
 * @brief Longest Common Prefix / 最長共通接頭辞 (接尾辞配列, 前処理 $O(N (\log N)^2)$ + $O(1)$)
 */
class longest_common_prefix {
    std::vector<int> rank;
    sparse_table<min_monoid<int> > table;

    void initialize(const std::string & s, const std::vector<int> & sa) {
        int n = s.length();
        std::vector<int> lcp(n, -1);  // lcp[i] is the length of the common prefix between i-th and (i+1)-th substring of s
        int h = 0;
        lcp[0] = 0;
        REP (i, n) {
            int j = sa[rank[i] - 1];
            if (h > 0) -- h;
            while (j + h < n and i + h < n and s[j + h] == s[i + h]) ++ h;
            lcp[rank[i] - 1] = h;
        }
        table = sparse_table<min_monoid<int> >(ALL(lcp));
    }

public:
    longest_common_prefix(const std::string & s) {
        std::vector<int> sa;
        compute_suffix_array(s, sa, rank);
        initialize(s, sa);
    }
    longest_common_prefix(const std::string & s, const std::vector<int> & sa, const std::vector<int> & rank_)
            : rank(rank_) {
        initialize(s, sa);
    }

    int get(int i, int j) const {
        int l = rank[i];
        int r = rank[j];
        if (l > r) std::swap(l, r);
        int n = rank.size() - 1;
        return std::min(n, table.range_get(l, r));
    }
};
#line 2 "string/longest_common_prefix.hpp"
#include <algorithm>
#include <string>
#include <vector>
#line 5 "string/suffix_array.hpp"
#include <utility>
#line 2 "utils/macros.hpp"
#define REP(i, n) for (int i = 0; (i) < (int)(n); ++ (i))
#define REP3(i, m, n) for (int i = (m); (i) < (int)(n); ++ (i))
#define REP_R(i, n) for (int i = (int)(n) - 1; (i) >= 0; -- (i))
#define REP3R(i, m, n) for (int i = (int)(n) - 1; (i) >= (int)(m); -- (i))
#define ALL(x) std::begin(x), std::end(x)
#line 7 "string/suffix_array.hpp"

/**
 * @brief Suffix Array / 接尾辞配列 ($O(N (\log N)^2)$, Manber & Myers)
 * @arg sa[i] is the index of i-th smallest substring of s, s[sa[i], N)
 * @arg rank[i] is the rank of substring s[i, N)
 * @note 蟻本より
 */
void compute_suffix_array(std::string const & s, std::vector<int> & sa, std::vector<int> & rank) {
    int n = s.length();
    sa.resize(n + 1);
    rank.resize(n + 1);
    REP (i, n + 1) {
        sa[i] = i;
        rank[i] = i < n ? s[i] : -1;
    }
    auto rankf = [&](int i) {
        return i <= n ? rank[i] : -1;
    };
    std::vector<int> nxt(n + 1);
    for (int k = 1; k <= n; k <<= 1) {
        auto cmp = [&](int i, int j) {
            return std::make_pair(rank[i], rankf(i + k)) < std::make_pair(rank[j], rankf(j + k));
        };
        std::sort(sa.begin(), sa.end(), cmp);
        nxt[sa[0]] = 0;
        REP3 (i, 1, n + 1) {
            nxt[sa[i]] = nxt[sa[i - 1]] + (cmp(sa[i - 1], sa[i]) ? 1 : 0);
        }
        rank.swap(nxt);
    }
}
#line 2 "data_structure/sparse_table.hpp"
#include <cassert>
#line 5 "data_structure/sparse_table.hpp"

/**
 * @brief Sparse Table (idempotent monoid)
 * @note the unit is required just for convenience
 * @note $O(N \log N)$ space
 */
template <class IdempotentMonoid>
struct sparse_table {
    typedef typename IdempotentMonoid::value_type value_type;
    std::vector<std::vector<value_type> > table;
    IdempotentMonoid mon;
    sparse_table() = default;

    /**
     * @note $O(N \log N)$ time
     */
    template <class InputIterator>
    sparse_table(InputIterator first, InputIterator last, const IdempotentMonoid & mon_ = IdempotentMonoid())
            : mon(mon_) {
        table.emplace_back(first, last);
        int n = table[0].size();
        int log_n = 32 - __builtin_clz(n);
        table.resize(log_n, std::vector<value_type>(n));
        REP (k, log_n - 1) {
            REP (i, n) {
                table[k + 1][i] = i + (1ll << k) < n ?
                    mon.mult(table[k][i], table[k][i + (1ll << k)]) :
                    table[k][i];
            }
        }
    }

    /**
     * @note $O(1)$
     */
    value_type range_get(int l, int r) const {
        if (l == r) return mon.unit();  // if there is no unit, remove this line
        assert (0 <= l and l < r and r <= (int)table[0].size());
        int k = 31 - __builtin_clz(r - l);  // log2
        return mon.mult(table[k][l], table[k][r - (1ll << k)]);
    }
};
#line 3 "monoids/min.hpp"
#include <limits>

template <class T>
struct min_monoid {
    typedef T value_type;
    value_type unit() const { return std::numeric_limits<T>::max(); }
    value_type mult(value_type a, value_type b) const { return std::min(a, b); }
};
#line 8 "string/longest_common_prefix.hpp"

/**
 * @brief Longest Common Prefix / 最長共通接頭辞 (接尾辞配列, 前処理 $O(N (\log N)^2)$ + $O(1)$)
 */
class longest_common_prefix {
    std::vector<int> rank;
    sparse_table<min_monoid<int> > table;

    void initialize(const std::string & s, const std::vector<int> & sa) {
        int n = s.length();
        std::vector<int> lcp(n, -1);  // lcp[i] is the length of the common prefix between i-th and (i+1)-th substring of s
        int h = 0;
        lcp[0] = 0;
        REP (i, n) {
            int j = sa[rank[i] - 1];
            if (h > 0) -- h;
            while (j + h < n and i + h < n and s[j + h] == s[i + h]) ++ h;
            lcp[rank[i] - 1] = h;
        }
        table = sparse_table<min_monoid<int> >(ALL(lcp));
    }

public:
    longest_common_prefix(const std::string & s) {
        std::vector<int> sa;
        compute_suffix_array(s, sa, rank);
        initialize(s, sa);
    }
    longest_common_prefix(const std::string & s, const std::vector<int> & sa, const std::vector<int> & rank_)
            : rank(rank_) {
        initialize(s, sa);
    }

    int get(int i, int j) const {
        int l = rank[i];
        int r = rank[j];
        if (l > r) std::swap(l, r);
        int n = rank.size() - 1;
        return std::min(n, table.range_get(l, r));
    }
};
Back to top page