This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub kmyk/competitive-programming-library
#include "string/longest_common_prefix.hpp"
#pragma once #include <algorithm> #include <string> #include <vector> #include "../string/suffix_array.hpp" #include "../data_structure/sparse_table.hpp" #include "../monoids/min.hpp" /** * @brief Longest Common Prefix / 最長共通接頭辞 (接尾辞配列, 前処理 $O(N (\log N)^2)$ + $O(1)$) */ class longest_common_prefix { std::vector<int> rank; sparse_table<min_monoid<int> > table; void initialize(const std::string & s, const std::vector<int> & sa) { int n = s.length(); std::vector<int> lcp(n, -1); // lcp[i] is the length of the common prefix between i-th and (i+1)-th substring of s int h = 0; lcp[0] = 0; REP (i, n) { int j = sa[rank[i] - 1]; if (h > 0) -- h; while (j + h < n and i + h < n and s[j + h] == s[i + h]) ++ h; lcp[rank[i] - 1] = h; } table = sparse_table<min_monoid<int> >(ALL(lcp)); } public: longest_common_prefix(const std::string & s) { std::vector<int> sa; compute_suffix_array(s, sa, rank); initialize(s, sa); } longest_common_prefix(const std::string & s, const std::vector<int> & sa, const std::vector<int> & rank_) : rank(rank_) { initialize(s, sa); } int get(int i, int j) const { int l = rank[i]; int r = rank[j]; if (l > r) std::swap(l, r); int n = rank.size() - 1; return std::min(n, table.range_get(l, r)); } };
#line 2 "string/longest_common_prefix.hpp" #include <algorithm> #include <string> #include <vector> #line 5 "string/suffix_array.hpp" #include <utility> #line 2 "utils/macros.hpp" #define REP(i, n) for (int i = 0; (i) < (int)(n); ++ (i)) #define REP3(i, m, n) for (int i = (m); (i) < (int)(n); ++ (i)) #define REP_R(i, n) for (int i = (int)(n) - 1; (i) >= 0; -- (i)) #define REP3R(i, m, n) for (int i = (int)(n) - 1; (i) >= (int)(m); -- (i)) #define ALL(x) std::begin(x), std::end(x) #line 7 "string/suffix_array.hpp" /** * @brief Suffix Array / 接尾辞配列 ($O(N (\log N)^2)$, Manber & Myers) * @arg sa[i] is the index of i-th smallest substring of s, s[sa[i], N) * @arg rank[i] is the rank of substring s[i, N) * @note 蟻本より */ void compute_suffix_array(std::string const & s, std::vector<int> & sa, std::vector<int> & rank) { int n = s.length(); sa.resize(n + 1); rank.resize(n + 1); REP (i, n + 1) { sa[i] = i; rank[i] = i < n ? s[i] : -1; } auto rankf = [&](int i) { return i <= n ? rank[i] : -1; }; std::vector<int> nxt(n + 1); for (int k = 1; k <= n; k <<= 1) { auto cmp = [&](int i, int j) { return std::make_pair(rank[i], rankf(i + k)) < std::make_pair(rank[j], rankf(j + k)); }; std::sort(sa.begin(), sa.end(), cmp); nxt[sa[0]] = 0; REP3 (i, 1, n + 1) { nxt[sa[i]] = nxt[sa[i - 1]] + (cmp(sa[i - 1], sa[i]) ? 1 : 0); } rank.swap(nxt); } } #line 2 "data_structure/sparse_table.hpp" #include <cassert> #line 5 "data_structure/sparse_table.hpp" /** * @brief Sparse Table (idempotent monoid) * @note the unit is required just for convenience * @note $O(N \log N)$ space */ template <class IdempotentMonoid> struct sparse_table { typedef typename IdempotentMonoid::value_type value_type; std::vector<std::vector<value_type> > table; IdempotentMonoid mon; sparse_table() = default; /** * @note $O(N \log N)$ time */ template <class InputIterator> sparse_table(InputIterator first, InputIterator last, const IdempotentMonoid & mon_ = IdempotentMonoid()) : mon(mon_) { table.emplace_back(first, last); int n = table[0].size(); int log_n = 32 - __builtin_clz(n); table.resize(log_n, std::vector<value_type>(n)); REP (k, log_n - 1) { REP (i, n) { table[k + 1][i] = i + (1ll << k) < n ? mon.mult(table[k][i], table[k][i + (1ll << k)]) : table[k][i]; } } } /** * @note $O(1)$ */ value_type range_get(int l, int r) const { if (l == r) return mon.unit(); // if there is no unit, remove this line assert (0 <= l and l < r and r <= (int)table[0].size()); int k = 31 - __builtin_clz(r - l); // log2 return mon.mult(table[k][l], table[k][r - (1ll << k)]); } }; #line 3 "monoids/min.hpp" #include <limits> template <class T> struct min_monoid { typedef T value_type; value_type unit() const { return std::numeric_limits<T>::max(); } value_type mult(value_type a, value_type b) const { return std::min(a, b); } }; #line 8 "string/longest_common_prefix.hpp" /** * @brief Longest Common Prefix / 最長共通接頭辞 (接尾辞配列, 前処理 $O(N (\log N)^2)$ + $O(1)$) */ class longest_common_prefix { std::vector<int> rank; sparse_table<min_monoid<int> > table; void initialize(const std::string & s, const std::vector<int> & sa) { int n = s.length(); std::vector<int> lcp(n, -1); // lcp[i] is the length of the common prefix between i-th and (i+1)-th substring of s int h = 0; lcp[0] = 0; REP (i, n) { int j = sa[rank[i] - 1]; if (h > 0) -- h; while (j + h < n and i + h < n and s[j + h] == s[i + h]) ++ h; lcp[rank[i] - 1] = h; } table = sparse_table<min_monoid<int> >(ALL(lcp)); } public: longest_common_prefix(const std::string & s) { std::vector<int> sa; compute_suffix_array(s, sa, rank); initialize(s, sa); } longest_common_prefix(const std::string & s, const std::vector<int> & sa, const std::vector<int> & rank_) : rank(rank_) { initialize(s, sa); } int get(int i, int j) const { int l = rank[i]; int r = rank[j]; if (l > r) std::swap(l, r); int n = rank.size() - 1; return std::min(n, table.range_get(l, r)); } };