This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub kmyk/competitive-programming-library
/**
* @brief enumerate primes in [2, n) with O(n log log n)
*/
vector<int> list_primes(int n) {
vector<bool> is_prime(n, true);
is_prime[0] = is_prime[1] = false;
for (int i = 2; i *(int64_t) i < n; ++ i)
if (is_prime[i])
for (int k = 2 * i; k < n; k += i)
is_prime[k] = false;
vector<int> primes;
for (int i = 2; i < n; ++ i)
if (is_prime[i])
primes.push_back(i);
return primes;
}
/**
* @note O(sqrt n)
*/
bool is_prime(int64_t n, vector<int> const & primes) {
if (n == 1) return false;
for (int p : primes) {
if (n < (int64_t)p * p) break;
if (n % p == 0) return true;
}
return false;
}
/**
* @note the last number of primes must be >= sqrt n
*/
map<int64_t, int> prime_factorize(int64_t n, vector<int> const & primes) {
map<int64_t, int> result;
for (int p : primes) {
if (n < p *(int64_t) p) break;
while (n % p == 0) {
result[p] += 1;
n /= p;
}
}
if (n != 1) result[n] += 1;
return result;
}
/**
* @note if n < 10^9, d(n) < 1200 + a
*/
vector<int64_t> list_divisors_from_prime_factors(int64_t n, vector<int64_t> const & prime_factors) {
vector<int64_t> result;
result.push_back(1);
for (auto it : prime_factors) {
int64_t p; int k; tie(p, k) = it;
int size = result.size();
REP (y, k) {
REP (x, size) {
result.push_back(result[y * size + x] * p);
}
}
}
return result;
}
/**
* @brief fully factorize all numbers in [0, n) with O(n log log n)
*/
vector<vector<int> > extended_sieve_of_eratosthenes(int n) {
vector<vector<int> > prime_factors(n + 1);
REP3 (i, 2, n) {
if (prime_factors[i].empty()) {
for (int k = i; k < n; k += i) {
prime_factors[k].push_back(i);
}
}
}
return prime_factors;
}
/**
* @note O(sqrt(n))
*/
map<int64_t, int> prime_factorize1(int64_t n) {
map<int64_t, int> factors;
for (int p : { 2, 3, 5 }) {
while (n % p == 0) {
n /= p;
++ factors[p];
}
}
for (int p = 6; (int64_t)p * p <= n; p += 6) {
for (int q : { p + 1, p + 5 }) {
while (n % q == 0) {
n /= q;
++ factors[q];
}
}
}
if (n) {
++ factors[n];
}
return factors;
}
#line 1 "old/primes-small.inc.cpp"
/**
* @brief enumerate primes in [2, n) with O(n log log n)
*/
vector<int> list_primes(int n) {
vector<bool> is_prime(n, true);
is_prime[0] = is_prime[1] = false;
for (int i = 2; i *(int64_t) i < n; ++ i)
if (is_prime[i])
for (int k = 2 * i; k < n; k += i)
is_prime[k] = false;
vector<int> primes;
for (int i = 2; i < n; ++ i)
if (is_prime[i])
primes.push_back(i);
return primes;
}
/**
* @note O(sqrt n)
*/
bool is_prime(int64_t n, vector<int> const & primes) {
if (n == 1) return false;
for (int p : primes) {
if (n < (int64_t)p * p) break;
if (n % p == 0) return true;
}
return false;
}
/**
* @note the last number of primes must be >= sqrt n
*/
map<int64_t, int> prime_factorize(int64_t n, vector<int> const & primes) {
map<int64_t, int> result;
for (int p : primes) {
if (n < p *(int64_t) p) break;
while (n % p == 0) {
result[p] += 1;
n /= p;
}
}
if (n != 1) result[n] += 1;
return result;
}
/**
* @note if n < 10^9, d(n) < 1200 + a
*/
vector<int64_t> list_divisors_from_prime_factors(int64_t n, vector<int64_t> const & prime_factors) {
vector<int64_t> result;
result.push_back(1);
for (auto it : prime_factors) {
int64_t p; int k; tie(p, k) = it;
int size = result.size();
REP (y, k) {
REP (x, size) {
result.push_back(result[y * size + x] * p);
}
}
}
return result;
}
/**
* @brief fully factorize all numbers in [0, n) with O(n log log n)
*/
vector<vector<int> > extended_sieve_of_eratosthenes(int n) {
vector<vector<int> > prime_factors(n + 1);
REP3 (i, 2, n) {
if (prime_factors[i].empty()) {
for (int k = i; k < n; k += i) {
prime_factors[k].push_back(i);
}
}
}
return prime_factors;
}
/**
* @note O(sqrt(n))
*/
map<int64_t, int> prime_factorize1(int64_t n) {
map<int64_t, int> factors;
for (int p : { 2, 3, 5 }) {
while (n % p == 0) {
n /= p;
++ factors[p];
}
}
for (int p = 6; (int64_t)p * p <= n; p += 6) {
for (int q : { p + 1, p + 5 }) {
while (n % q == 0) {
n /= q;
++ factors[q];
}
}
}
if (n) {
++ factors[n];
}
return factors;
}