This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub kmyk/competitive-programming-library
ll knapsack_problem_branch_and_bound(int n, ll max_w, vector<ll> const & a_v, vector<ll> const & a_w) {
vector<ll> v(n), w(n); {
vector<int> xs(n);
iota(ALL(xs), 0);
sort(ALL(xs), [&](int i, int j) {
return a_v[i] *(double) a_w[j] > a_v[j] *(double) a_w[i];
});
REP (i, n) {
v[i] = a_v[xs[i]];
w[i] = a_w[xs[i]];
}
}
ll ans = 0;
function<void (int, ll, ll)> go = [&](int i, ll cur_v, ll cur_w) {
if (max_w < cur_w) return; // not executable
if (i == n) {
chmax(ans, cur_v);
return; // terminate
}
ll lr_v = cur_v; // linear relaxation
ll lr_w = cur_w;
int j = i;
for (; j < n and lr_w + w[j] <= max_w; ++ j) { // greedy
lr_w += w[j];
lr_v += v[j];
}
if (lr_w == max_w or j == n) {
chmax(ans, lr_v);
return; // accept greedy
}
double lr_ans = lr_v + v[j] * ((max_w - lr_w) /(double) w[j]);
if (lr_ans <= ans) return; // bound
go(i + 1, cur_v + v[i], cur_w + w[i]);
go(i + 1, cur_v, cur_w );
};
go(0, 0, 0);
return ans;
}
#line 1 "old/knapsack-problem-branch-and-bound.inc.cpp"
ll knapsack_problem_branch_and_bound(int n, ll max_w, vector<ll> const & a_v, vector<ll> const & a_w) {
vector<ll> v(n), w(n); {
vector<int> xs(n);
iota(ALL(xs), 0);
sort(ALL(xs), [&](int i, int j) {
return a_v[i] *(double) a_w[j] > a_v[j] *(double) a_w[i];
});
REP (i, n) {
v[i] = a_v[xs[i]];
w[i] = a_w[xs[i]];
}
}
ll ans = 0;
function<void (int, ll, ll)> go = [&](int i, ll cur_v, ll cur_w) {
if (max_w < cur_w) return; // not executable
if (i == n) {
chmax(ans, cur_v);
return; // terminate
}
ll lr_v = cur_v; // linear relaxation
ll lr_w = cur_w;
int j = i;
for (; j < n and lr_w + w[j] <= max_w; ++ j) { // greedy
lr_w += w[j];
lr_v += v[j];
}
if (lr_w == max_w or j == n) {
chmax(ans, lr_v);
return; // accept greedy
}
double lr_ans = lr_v + v[j] * ((max_w - lr_w) /(double) w[j]);
if (lr_ans <= ans) return; // bound
go(i + 1, cur_v + v[i], cur_w + w[i]);
go(i + 1, cur_v, cur_w );
};
go(0, 0, 0);
return ans;
}