This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub kmyk/competitive-programming-library
/**
* @brief compute the distances from root
* @note O(n)
* @arg g is a digraph
* @note loops and double edges are allowed
*/
vector<int> breadth_first_search(int root, vector<vector<int> > const & g) {
int n = g.size();
vector<int> dist(n, INT_MAX);
queue<int> que;
dist[root] = 0;
que.push(root);
while (not que.empty()) {
int i = que.front(); que.pop();
for (int j : g[i]) if (dist[j] == INT_MAX) {
dist[j] = dist[i] + 1;
que.push(j);
}
}
return dist;
}
/**
* @brief 0-1 BFS
* @arg g is a weighted digraph whose weights are 0 or 1
* @note loops and double edges are allowed
*/
vector<int> zero_one_breadth_first_search(int root, vector<vector<pair<int, bool> > > const & g) {
int n = g.size();
vector<int> dist(n, INT_MAX);
deque<pair<int, int> > que;
dist[root] = 0;
que.emplace_back(root, dist[root]);
while (not que.empty()) {
int i, dist_i; tie(i, dist_i) = que.front(); que.pop_front();
if (dist[i] < dist_i) continue;
for (auto edge : g[i]) {
int j; bool cost; tie(j, cost) = edge;
if (dist[i] + cost < dist[j]) {
dist[j] = dist[i] + cost;
if (cost) {
que.emplace_back(j, dist[j]);
} else {
que.emplace_front(j, dist[j]);
}
}
}
}
return dist;
}
#line 1 "old/breadth-first-search.inc.cpp"
/**
* @brief compute the distances from root
* @note O(n)
* @arg g is a digraph
* @note loops and double edges are allowed
*/
vector<int> breadth_first_search(int root, vector<vector<int> > const & g) {
int n = g.size();
vector<int> dist(n, INT_MAX);
queue<int> que;
dist[root] = 0;
que.push(root);
while (not que.empty()) {
int i = que.front(); que.pop();
for (int j : g[i]) if (dist[j] == INT_MAX) {
dist[j] = dist[i] + 1;
que.push(j);
}
}
return dist;
}
/**
* @brief 0-1 BFS
* @arg g is a weighted digraph whose weights are 0 or 1
* @note loops and double edges are allowed
*/
vector<int> zero_one_breadth_first_search(int root, vector<vector<pair<int, bool> > > const & g) {
int n = g.size();
vector<int> dist(n, INT_MAX);
deque<pair<int, int> > que;
dist[root] = 0;
que.emplace_back(root, dist[root]);
while (not que.empty()) {
int i, dist_i; tie(i, dist_i) = que.front(); que.pop_front();
if (dist[i] < dist_i) continue;
for (auto edge : g[i]) {
int j; bool cost; tie(j, cost) = edge;
if (dist[i] + cost < dist[j]) {
dist[j] = dist[i] + cost;
if (cost) {
que.emplace_back(j, dist[j]);
} else {
que.emplace_front(j, dist[j]);
}
}
}
}
return dist;
}