This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub kmyk/competitive-programming-library
/**
* @brief the Bernoulli number
* @tparam MOD must be a prime
* @note $O(n^2)$
* @see https://ja.wikipedia.org/wiki/%E3%83%99%E3%83%AB%E3%83%8C%E3%83%BC%E3%82%A4%E6%95%B0
*/
template <int MOD>
int bernoulli_number(int i) {
static vector<int> dp(1, 1);
while (dp.size() <= i) {
int n = dp.size();
ll acc = 0;
REP (k, n) {
acc += choose<MOD>(n + 1, k) *(ll) dp[k] % MOD;
}
acc %= MOD;
(acc *= modinv(n + 1, MOD)) %= MOD;
acc = (acc == 0 ? 0 : MOD - acc);
dp.push_back(acc);
}
return dp[i];
}
unittest {
constexpr int MOD = 1e9 + 7;
assert (bernoulli_number<MOD>(0) == 1);
assert (bernoulli_number<MOD>(1) == (MOD - 1ll) * modinv(2, MOD) % MOD);
assert (bernoulli_number<MOD>(2) == modinv(6, MOD));
assert (bernoulli_number<MOD>(3) == 0);
assert (bernoulli_number<MOD>(4) == (MOD - 1ll) * modinv(30, MOD) % MOD);
assert (bernoulli_number<MOD>(26) == 8553103ll * modinv(6, MOD) % MOD);
}
/**
* @brief $0^k + 1^k + 2^k + ... + (n - 1)^k$
* @see https://yukicoder.me/problems/no/665
* @note n can be >= MOD
*/
template <int MOD>
int sum_of_pow(ll n, int k) {
ll acc = 0;
REP (j, k + 1) {
acc += choose<MOD>(k + 1, j) *(ll) bernoulli_number<MOD>(j) % MOD *(ll) powmod(n % MOD, k - j + 1, MOD) % MOD;
}
acc %= MOD;
(acc *= modinv(k + 1, MOD)) %= MOD;
return acc;
}
#line 1 "old/bernoulli-number.inc.cpp"
/**
* @brief the Bernoulli number
* @tparam MOD must be a prime
* @note $O(n^2)$
* @see https://ja.wikipedia.org/wiki/%E3%83%99%E3%83%AB%E3%83%8C%E3%83%BC%E3%82%A4%E6%95%B0
*/
template <int MOD>
int bernoulli_number(int i) {
static vector<int> dp(1, 1);
while (dp.size() <= i) {
int n = dp.size();
ll acc = 0;
REP (k, n) {
acc += choose<MOD>(n + 1, k) *(ll) dp[k] % MOD;
}
acc %= MOD;
(acc *= modinv(n + 1, MOD)) %= MOD;
acc = (acc == 0 ? 0 : MOD - acc);
dp.push_back(acc);
}
return dp[i];
}
unittest {
constexpr int MOD = 1e9 + 7;
assert (bernoulli_number<MOD>(0) == 1);
assert (bernoulli_number<MOD>(1) == (MOD - 1ll) * modinv(2, MOD) % MOD);
assert (bernoulli_number<MOD>(2) == modinv(6, MOD));
assert (bernoulli_number<MOD>(3) == 0);
assert (bernoulli_number<MOD>(4) == (MOD - 1ll) * modinv(30, MOD) % MOD);
assert (bernoulli_number<MOD>(26) == 8553103ll * modinv(6, MOD) % MOD);
}
/**
* @brief $0^k + 1^k + 2^k + ... + (n - 1)^k$
* @see https://yukicoder.me/problems/no/665
* @note n can be >= MOD
*/
template <int MOD>
int sum_of_pow(ll n, int k) {
ll acc = 0;
REP (j, k + 1) {
acc += choose<MOD>(k + 1, j) *(ll) bernoulli_number<MOD>(j) % MOD *(ll) powmod(n % MOD, k - j + 1, MOD) % MOD;
}
acc %= MOD;
(acc *= modinv(k + 1, MOD)) %= MOD;
return acc;
}