This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub kmyk/competitive-programming-library
/** * @brief the Bernoulli number * @tparam MOD must be a prime * @note $O(n^2)$ * @see https://ja.wikipedia.org/wiki/%E3%83%99%E3%83%AB%E3%83%8C%E3%83%BC%E3%82%A4%E6%95%B0 */ template <int MOD> int bernoulli_number(int i) { static vector<int> dp(1, 1); while (dp.size() <= i) { int n = dp.size(); ll acc = 0; REP (k, n) { acc += choose<MOD>(n + 1, k) *(ll) dp[k] % MOD; } acc %= MOD; (acc *= modinv(n + 1, MOD)) %= MOD; acc = (acc == 0 ? 0 : MOD - acc); dp.push_back(acc); } return dp[i]; } unittest { constexpr int MOD = 1e9 + 7; assert (bernoulli_number<MOD>(0) == 1); assert (bernoulli_number<MOD>(1) == (MOD - 1ll) * modinv(2, MOD) % MOD); assert (bernoulli_number<MOD>(2) == modinv(6, MOD)); assert (bernoulli_number<MOD>(3) == 0); assert (bernoulli_number<MOD>(4) == (MOD - 1ll) * modinv(30, MOD) % MOD); assert (bernoulli_number<MOD>(26) == 8553103ll * modinv(6, MOD) % MOD); } /** * @brief $0^k + 1^k + 2^k + ... + (n - 1)^k$ * @see https://yukicoder.me/problems/no/665 * @note n can be >= MOD */ template <int MOD> int sum_of_pow(ll n, int k) { ll acc = 0; REP (j, k + 1) { acc += choose<MOD>(k + 1, j) *(ll) bernoulli_number<MOD>(j) % MOD *(ll) powmod(n % MOD, k - j + 1, MOD) % MOD; } acc %= MOD; (acc *= modinv(k + 1, MOD)) %= MOD; return acc; }
#line 1 "old/bernoulli-number.inc.cpp" /** * @brief the Bernoulli number * @tparam MOD must be a prime * @note $O(n^2)$ * @see https://ja.wikipedia.org/wiki/%E3%83%99%E3%83%AB%E3%83%8C%E3%83%BC%E3%82%A4%E6%95%B0 */ template <int MOD> int bernoulli_number(int i) { static vector<int> dp(1, 1); while (dp.size() <= i) { int n = dp.size(); ll acc = 0; REP (k, n) { acc += choose<MOD>(n + 1, k) *(ll) dp[k] % MOD; } acc %= MOD; (acc *= modinv(n + 1, MOD)) %= MOD; acc = (acc == 0 ? 0 : MOD - acc); dp.push_back(acc); } return dp[i]; } unittest { constexpr int MOD = 1e9 + 7; assert (bernoulli_number<MOD>(0) == 1); assert (bernoulli_number<MOD>(1) == (MOD - 1ll) * modinv(2, MOD) % MOD); assert (bernoulli_number<MOD>(2) == modinv(6, MOD)); assert (bernoulli_number<MOD>(3) == 0); assert (bernoulli_number<MOD>(4) == (MOD - 1ll) * modinv(30, MOD) % MOD); assert (bernoulli_number<MOD>(26) == 8553103ll * modinv(6, MOD) % MOD); } /** * @brief $0^k + 1^k + 2^k + ... + (n - 1)^k$ * @see https://yukicoder.me/problems/no/665 * @note n can be >= MOD */ template <int MOD> int sum_of_pow(ll n, int k) { ll acc = 0; REP (j, k + 1) { acc += choose<MOD>(k + 1, j) *(ll) bernoulli_number<MOD>(j) % MOD *(ll) powmod(n % MOD, k - j + 1, MOD) % MOD; } acc %= MOD; (acc *= modinv(k + 1, MOD)) %= MOD; return acc; }