This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub kmyk/competitive-programming-library
#define PROBLEM "http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=ALDS1_1_C" #include "../number/primes.hpp" #include <cassert> #include <cstdio> int main() { int n; scanf("%d", &n); prepared_primes primes(1e6 + 3); int cnt = 0; REP (i, n) { int a; scanf("%d", &a); cnt += primes.is_prime(a); } printf("%d\n", cnt); return 0; }
#line 1 "number/primes.aoj.test.cpp" #define PROBLEM "http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=ALDS1_1_C" #line 2 "number/primes.hpp" #include <algorithm> #include <cassert> #include <cstdint> #include <vector> #line 2 "utils/macros.hpp" #define REP(i, n) for (int i = 0; (i) < (int)(n); ++ (i)) #define REP3(i, m, n) for (int i = (m); (i) < (int)(n); ++ (i)) #define REP_R(i, n) for (int i = (int)(n) - 1; (i) >= 0; -- (i)) #define REP3R(i, m, n) for (int i = (int)(n) - 1; (i) >= (int)(m); -- (i)) #define ALL(x) std::begin(x), std::end(x) #line 7 "number/primes.hpp" struct prepared_primes { int size; std::vector<int> sieve; std::vector<int> primes; /** * @note O(size) */ prepared_primes(int size_) : size(size_) { sieve.resize(size); REP3 (p, 2, size) if (sieve[p] == 0) { primes.push_back(p); for (int k = p; k < size; k += p) { if (sieve[k] == 0) { sieve[k] = p; } } } } /** * @note let k be the length of the result, O(k) if n < size; O(\sqrt{n} + k) if size <= n < size^2 */ std::vector<int64_t> list_prime_factors(int64_t n) const { assert (1 <= n and n < (int64_t)size * size); std::vector<int64_t> result; // trial division for large part for (int p : primes) { if (n < size or n < (int64_t)p * p) { break; } while (n % p == 0) { n /= p; result.push_back(p); } } // small part if (n == 1) { // nop } else if (n < size) { while (n != 1) { result.push_back(sieve[n]); n /= sieve[n]; } } else { result.push_back(n); } assert (std::is_sorted(ALL(result))); return result; } std::vector<int64_t> list_all_factors(int64_t n) const { auto p = list_prime_factors(n); std::vector<int64_t> d; d.push_back(1); for (int l = 0; l < p.size(); ) { int r = l + 1; while (r < p.size() and p[r] == p[l]) ++ r; int n = d.size(); REP (k1, r - l) { REP (k2, n) { d.push_back(d[d.size() - n] * p[l]); } } l = r; } return d; } /** * @note O(1) if n < size; O(sqrt n) if size <= n < size^2 */ bool is_prime(int64_t n) const { assert (1 <= n and n < (int64_t)size * size); if (n < size) { return sieve[n] == n; } for (int p : primes) { if (n < (int64_t)p * p) { break; } if (n % p == 0) { return false; } } return true; } }; #line 4 "number/primes.aoj.test.cpp" #include <cstdio> int main() { int n; scanf("%d", &n); prepared_primes primes(1e6 + 3); int cnt = 0; REP (i, n) { int a; scanf("%d", &a); cnt += primes.is_prime(a); } printf("%d\n", cnt); return 0; }