This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub kmyk/competitive-programming-library
#include "number/matrix_template.hpp"
#pragma once #include <array> #include <cstdint> #include "../utils/macros.hpp" template <typename T, std::size_t H, std::size_t W> using matrix = std::array<std::array<T, W>, H>; template <typename T, std::size_t A, std::size_t B, std::size_t C> matrix<T, A, C> operator * (matrix<T, A, B> const & a, matrix<T, B, C> const & b) { matrix<T, A, C> c = {}; REP (y, A) REP (z, B) REP (x, C) c[y][x] += a[y][z] * b[z][x]; return c; } template <typename T, std::size_t H, std::size_t W> std::array<T, H> operator * (matrix<T, H, W> const & a, std::array<T, W> const & b) { std::array<T, H> c = {}; REP (y, H) REP (z, W) c[y] += a[y][z] * b[z]; return c; } template <typename T, std::size_t H, std::size_t W> matrix<T, H, W> operator + (matrix<T, H, W> const & a, matrix<T, H, W> const & b) { matrix<T, H, W> c; REP (y, H) REP (x, W) c[y][x] = a[y][x] + b[y][x]; return c; } template <typename T, std::size_t N> std::array<T, N> operator + (std::array<T, N> const & a, std::array<T, N> const & b) { std::array<T, N> c; REP (i, N) c[i] = a[i] + b[i]; return c; } template <typename T, std::size_t H, std::size_t W> matrix<T, H, W> zero_matrix() { return {}; } template <typename T, std::size_t N> matrix<T, N, N> unit_matrix() { matrix<T, N, N> a = {}; REP (i, N) a[i][i] = 1; return a; } template <typename T, std::size_t N> matrix<T, N, N> matpow(matrix<T, N, N> x, int64_t k) { matrix<T, N, N> y = unit_matrix<T, N>(); for (; k; k >>= 1) { if (k & 1) y = y * x; x = x * x; } return y; }
#line 2 "number/matrix_template.hpp" #include <array> #include <cstdint> #line 2 "utils/macros.hpp" #define REP(i, n) for (int i = 0; (i) < (int)(n); ++ (i)) #define REP3(i, m, n) for (int i = (m); (i) < (int)(n); ++ (i)) #define REP_R(i, n) for (int i = (int)(n) - 1; (i) >= 0; -- (i)) #define REP3R(i, m, n) for (int i = (int)(n) - 1; (i) >= (int)(m); -- (i)) #define ALL(x) std::begin(x), std::end(x) #line 5 "number/matrix_template.hpp" template <typename T, std::size_t H, std::size_t W> using matrix = std::array<std::array<T, W>, H>; template <typename T, std::size_t A, std::size_t B, std::size_t C> matrix<T, A, C> operator * (matrix<T, A, B> const & a, matrix<T, B, C> const & b) { matrix<T, A, C> c = {}; REP (y, A) REP (z, B) REP (x, C) c[y][x] += a[y][z] * b[z][x]; return c; } template <typename T, std::size_t H, std::size_t W> std::array<T, H> operator * (matrix<T, H, W> const & a, std::array<T, W> const & b) { std::array<T, H> c = {}; REP (y, H) REP (z, W) c[y] += a[y][z] * b[z]; return c; } template <typename T, std::size_t H, std::size_t W> matrix<T, H, W> operator + (matrix<T, H, W> const & a, matrix<T, H, W> const & b) { matrix<T, H, W> c; REP (y, H) REP (x, W) c[y][x] = a[y][x] + b[y][x]; return c; } template <typename T, std::size_t N> std::array<T, N> operator + (std::array<T, N> const & a, std::array<T, N> const & b) { std::array<T, N> c; REP (i, N) c[i] = a[i] + b[i]; return c; } template <typename T, std::size_t H, std::size_t W> matrix<T, H, W> zero_matrix() { return {}; } template <typename T, std::size_t N> matrix<T, N, N> unit_matrix() { matrix<T, N, N> a = {}; REP (i, N) a[i][i] = 1; return a; } template <typename T, std::size_t N> matrix<T, N, N> matpow(matrix<T, N, N> x, int64_t k) { matrix<T, N, N> y = unit_matrix<T, N>(); for (; k; k >>= 1) { if (k & 1) y = y * x; x = x * x; } return y; }