This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub kmyk/competitive-programming-library
#include "number/matrix.hpp"
#pragma once
#include <cstdint>
#include <vector>
#include "../utils/macros.hpp"
template <typename T>
std::vector<std::vector<T> > operator * (const std::vector<std::vector<T> >& a, const std::vector<std::vector<T> >& b) {
int n = a.size();
std::vector<std::vector<T> > c(n, std::vector<T>(n));
REP (y, n) {
REP (z, n) {
REP (x, n) {
c[y][x] += a[y][z] * b[z][x];
}
}
}
return c;
}
template <typename T>
std::vector<T> operator * (const std::vector<std::vector<T> >& a, const std::vector<T>& b) {
int n = a.size();
std::vector<T> c(n);
REP (y, n) {
REP (z, n) {
c[y] += a[y][z] * b[z];
}
}
return c;
}
template <typename T>
std::vector<std::vector<T> > unit_matrix(int n) {
auto e = std::vector<std::vector<T> >(n, std::vector<T>(n));
REP (i, n) {
e[i][i] = 1;
}
return e;
}
template <typename T>
std::vector<std::vector<T> > zero_matrix(int n) {
return std::vector<std::vector<T> >(n, std::vector<T>(n));
}
template <typename T>
std::vector<std::vector<T> > matpow(std::vector<std::vector<T> > x, int64_t y) {
int n = x.size();
auto z = unit_matrix<T>(n);
for (int64_t i = 1; i <= y; i <<= 1) {
if (y & i) {
z = z * x;
}
x = x * x;
}
return z;
}
#line 2 "number/matrix.hpp"
#include <cstdint>
#include <vector>
#line 2 "utils/macros.hpp"
#define REP(i, n) for (int i = 0; (i) < (int)(n); ++ (i))
#define REP3(i, m, n) for (int i = (m); (i) < (int)(n); ++ (i))
#define REP_R(i, n) for (int i = (int)(n) - 1; (i) >= 0; -- (i))
#define REP3R(i, m, n) for (int i = (int)(n) - 1; (i) >= (int)(m); -- (i))
#define ALL(x) std::begin(x), std::end(x)
#line 5 "number/matrix.hpp"
template <typename T>
std::vector<std::vector<T> > operator * (const std::vector<std::vector<T> >& a, const std::vector<std::vector<T> >& b) {
int n = a.size();
std::vector<std::vector<T> > c(n, std::vector<T>(n));
REP (y, n) {
REP (z, n) {
REP (x, n) {
c[y][x] += a[y][z] * b[z][x];
}
}
}
return c;
}
template <typename T>
std::vector<T> operator * (const std::vector<std::vector<T> >& a, const std::vector<T>& b) {
int n = a.size();
std::vector<T> c(n);
REP (y, n) {
REP (z, n) {
c[y] += a[y][z] * b[z];
}
}
return c;
}
template <typename T>
std::vector<std::vector<T> > unit_matrix(int n) {
auto e = std::vector<std::vector<T> >(n, std::vector<T>(n));
REP (i, n) {
e[i][i] = 1;
}
return e;
}
template <typename T>
std::vector<std::vector<T> > zero_matrix(int n) {
return std::vector<std::vector<T> >(n, std::vector<T>(n));
}
template <typename T>
std::vector<std::vector<T> > matpow(std::vector<std::vector<T> > x, int64_t y) {
int n = x.size();
auto z = unit_matrix<T>(n);
for (int64_t i = 1; i <= y; i <<= 1) {
if (y & i) {
z = z * x;
}
x = x * x;
}
return z;
}