This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub kmyk/competitive-programming-library
#include "number/matrix.hpp"
#pragma once #include <cstdint> #include <vector> #include "../utils/macros.hpp" template <typename T> std::vector<std::vector<T> > operator * (const std::vector<std::vector<T> >& a, const std::vector<std::vector<T> >& b) { int n = a.size(); std::vector<std::vector<T> > c(n, std::vector<T>(n)); REP (y, n) { REP (z, n) { REP (x, n) { c[y][x] += a[y][z] * b[z][x]; } } } return c; } template <typename T> std::vector<T> operator * (const std::vector<std::vector<T> >& a, const std::vector<T>& b) { int n = a.size(); std::vector<T> c(n); REP (y, n) { REP (z, n) { c[y] += a[y][z] * b[z]; } } return c; } template <typename T> std::vector<std::vector<T> > unit_matrix(int n) { auto e = std::vector<std::vector<T> >(n, std::vector<T>(n)); REP (i, n) { e[i][i] = 1; } return e; } template <typename T> std::vector<std::vector<T> > zero_matrix(int n) { return std::vector<std::vector<T> >(n, std::vector<T>(n)); } template <typename T> std::vector<std::vector<T> > matpow(std::vector<std::vector<T> > x, int64_t y) { int n = x.size(); auto z = unit_matrix<T>(n); for (int64_t i = 1; i <= y; i <<= 1) { if (y & i) { z = z * x; } x = x * x; } return z; }
#line 2 "number/matrix.hpp" #include <cstdint> #include <vector> #line 2 "utils/macros.hpp" #define REP(i, n) for (int i = 0; (i) < (int)(n); ++ (i)) #define REP3(i, m, n) for (int i = (m); (i) < (int)(n); ++ (i)) #define REP_R(i, n) for (int i = (int)(n) - 1; (i) >= 0; -- (i)) #define REP3R(i, m, n) for (int i = (int)(n) - 1; (i) >= (int)(m); -- (i)) #define ALL(x) std::begin(x), std::end(x) #line 5 "number/matrix.hpp" template <typename T> std::vector<std::vector<T> > operator * (const std::vector<std::vector<T> >& a, const std::vector<std::vector<T> >& b) { int n = a.size(); std::vector<std::vector<T> > c(n, std::vector<T>(n)); REP (y, n) { REP (z, n) { REP (x, n) { c[y][x] += a[y][z] * b[z][x]; } } } return c; } template <typename T> std::vector<T> operator * (const std::vector<std::vector<T> >& a, const std::vector<T>& b) { int n = a.size(); std::vector<T> c(n); REP (y, n) { REP (z, n) { c[y] += a[y][z] * b[z]; } } return c; } template <typename T> std::vector<std::vector<T> > unit_matrix(int n) { auto e = std::vector<std::vector<T> >(n, std::vector<T>(n)); REP (i, n) { e[i][i] = 1; } return e; } template <typename T> std::vector<std::vector<T> > zero_matrix(int n) { return std::vector<std::vector<T> >(n, std::vector<T>(n)); } template <typename T> std::vector<std::vector<T> > matpow(std::vector<std::vector<T> > x, int64_t y) { int n = x.size(); auto z = unit_matrix<T>(n); for (int64_t i = 1; i <= y; i <<= 1) { if (y & i) { z = z * x; } x = x * x; } return z; }