This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub kmyk/competitive-programming-library
#include "number/inversion_number.hpp"
#pragma once #include <cstdint> #include <vector> #include "../data_structure/binary_indexed_tree.hpp" #include "../utils/macros.hpp" #include "../monoids/plus.hpp" int64_t inversion_number(const std::vector<int> &a) { int n = a.size(); binary_indexed_tree<plus_monoid<int64_t>> bit(n + 1); int64_t cnt = 0; REP (i, n) { cnt += i - bit.initial_range_get(a[i] + 1); bit.point_mult(a[i], 1); } return cnt; }
#line 2 "number/inversion_number.hpp" #include <cstdint> #include <vector> #line 2 "data_structure/binary_indexed_tree.hpp" #include <cassert> #line 2 "utils/macros.hpp" #define REP(i, n) for (int i = 0; (i) < (int)(n); ++ (i)) #define REP3(i, m, n) for (int i = (m); (i) < (int)(n); ++ (i)) #define REP_R(i, n) for (int i = (int)(n) - 1; (i) >= 0; -- (i)) #define REP3R(i, m, n) for (int i = (int)(n) - 1; (i) >= (int)(m); -- (i)) #define ALL(x) std::begin(x), std::end(x) #line 5 "data_structure/binary_indexed_tree.hpp" /** * @brief Binary Indexed Tree */ template <typename CommutativeMonoid> struct binary_indexed_tree { typedef typename CommutativeMonoid::value_type value_type; CommutativeMonoid mon; std::vector<value_type> data; binary_indexed_tree(int n, CommutativeMonoid const & mon_ = CommutativeMonoid()) : mon(mon_), data(n, mon.unit()) { } template <class InputIterator> binary_indexed_tree(InputIterator first, InputIterator last, CommutativeMonoid const & mon_ = CommutativeMonoid()) : mon(mon_), data(first, last) { REP3 (j, 1, data.size() + 1) { int k = j + (j & -j); if (k - 1 < static_cast<int>(data.size())) { data[k - 1] = mon.mult(data[k - 1], data[j - 1]); } } } /** * @note $a_i \gets a_i + z$ * @note $O(\log N)$ */ void point_mult(int i, value_type z) { assert (0 <= i and i < static_cast<int>(data.size())); for (int j = i + 1; j <= static_cast<int>(data.size()); j += j & -j) { data[j - 1] = mon.mult(data[j - 1], z); } } /** * @note $\sum _ {i \lt r} a_i$ * @note $O(\log N)$ */ value_type initial_range_get(int r) { assert (0 <= r and r <= static_cast<int>(data.size())); value_type acc = mon.unit(); for (int i = r; 0 < i; i -= i & -i) { acc = mon.mult(data[i - 1], acc); } return acc; } }; #line 2 "monoids/plus.hpp" template <class T> struct plus_monoid { typedef T value_type; value_type unit() const { return value_type(); } value_type mult(value_type a, value_type b) const { return a + b; } }; #line 7 "number/inversion_number.hpp" int64_t inversion_number(const std::vector<int> &a) { int n = a.size(); binary_indexed_tree<plus_monoid<int64_t>> bit(n + 1); int64_t cnt = 0; REP (i, n) { cnt += i - bit.initial_range_get(a[i] + 1); bit.point_mult(a[i], 1); } return cnt; }