This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub kmyk/competitive-programming-library
#include "number/fast_fourier_transformation.hpp"
#pragma once #include <algorithm> #include <cassert> #include <cmath> #include <complex> #include <vector> #include "../utils/macros.hpp" /** * @note O(N log N) * @note radix-2, decimation-in-frequency, Cooley-Tukey * @note cache std::polar (~ 2x faster) */ template <typename R> void fft_inplace(std::vector<std::complex<R> > & f, bool inverse) { const int n = f.size(); assert (n == pow(2, log2(n))); // cache static std::vector<std::complex<R> > cache; if ((int)cache.size() != n / 2) { const R theta = 2 * M_PI / n; cache.resize(n / 2); REP (irev, n / 2) { cache[irev] = std::polar<R>(1, irev * theta); } } // bit reverse int i = 0; REP3 (j, 1, n - 1) { for (int k = n >> 1; (i ^= k) < k; k >>= 1); if (j < i) swap(f[i], f[j]); } // divide and conquer for (int mh = 1; (mh << 1) <= n; mh <<= 1) { int irev = 0; for (int i = 0; i < n; i += (mh << 1)) { auto w = (inverse ? conj(cache[irev]) : cache[irev]); for (int k = n >> 2; (irev ^= k) < k; k >>= 1); REP3 (j, i, mh + i) { int k = j + mh; std::complex<R> x = f[j] - f[k]; f[j] += f[k]; f[k] = w * x; } } } } template <typename R> std::vector<std::complex<R> > fft(std::vector<std::complex<R> > f) { f.resize(pow(2, ceil(log2(f.size())))); fft_inplace(f, false); return f; } template <typename R> std::vector<std::complex<R> > ifft(std::vector<std::complex<R> > f) { f.resize(pow(2, ceil(log2(f.size())))); fft_inplace(f, true); return f; } /** * @brief FFT convolution * @note O(N log N) * @note (f \ast g)(i) = \sum_{0 \le j \lt i + 1} f(j) g(i - j) */ template <typename T, typename R = double> std::vector<T> fft_convolution(std::vector<T> const & a, std::vector<T> const & b) { assert (not a.empty() and not b.empty()); int m = a.size() + b.size() - 1; int n = pow(2, ceil(log2(m))); std::vector<std::complex<R> > x(n), y(n); copy(ALL(a), x.begin()); copy(ALL(b), y.begin()); fft_inplace(x, false); fft_inplace(y, false); std::vector<std::complex<R> > z(n); REP (i, n) { z[i] = x[i] * y[i]; } fft_inplace(z, true); std::vector<T> c(m); REP (i, m) { c[i] = std::is_integral<T>::value ? round(z[i].real() / n) : z[i].real() / n; } return c; }
#line 2 "number/fast_fourier_transformation.hpp" #include <algorithm> #include <cassert> #include <cmath> #include <complex> #include <vector> #line 2 "utils/macros.hpp" #define REP(i, n) for (int i = 0; (i) < (int)(n); ++ (i)) #define REP3(i, m, n) for (int i = (m); (i) < (int)(n); ++ (i)) #define REP_R(i, n) for (int i = (int)(n) - 1; (i) >= 0; -- (i)) #define REP3R(i, m, n) for (int i = (int)(n) - 1; (i) >= (int)(m); -- (i)) #define ALL(x) std::begin(x), std::end(x) #line 8 "number/fast_fourier_transformation.hpp" /** * @note O(N log N) * @note radix-2, decimation-in-frequency, Cooley-Tukey * @note cache std::polar (~ 2x faster) */ template <typename R> void fft_inplace(std::vector<std::complex<R> > & f, bool inverse) { const int n = f.size(); assert (n == pow(2, log2(n))); // cache static std::vector<std::complex<R> > cache; if ((int)cache.size() != n / 2) { const R theta = 2 * M_PI / n; cache.resize(n / 2); REP (irev, n / 2) { cache[irev] = std::polar<R>(1, irev * theta); } } // bit reverse int i = 0; REP3 (j, 1, n - 1) { for (int k = n >> 1; (i ^= k) < k; k >>= 1); if (j < i) swap(f[i], f[j]); } // divide and conquer for (int mh = 1; (mh << 1) <= n; mh <<= 1) { int irev = 0; for (int i = 0; i < n; i += (mh << 1)) { auto w = (inverse ? conj(cache[irev]) : cache[irev]); for (int k = n >> 2; (irev ^= k) < k; k >>= 1); REP3 (j, i, mh + i) { int k = j + mh; std::complex<R> x = f[j] - f[k]; f[j] += f[k]; f[k] = w * x; } } } } template <typename R> std::vector<std::complex<R> > fft(std::vector<std::complex<R> > f) { f.resize(pow(2, ceil(log2(f.size())))); fft_inplace(f, false); return f; } template <typename R> std::vector<std::complex<R> > ifft(std::vector<std::complex<R> > f) { f.resize(pow(2, ceil(log2(f.size())))); fft_inplace(f, true); return f; } /** * @brief FFT convolution * @note O(N log N) * @note (f \ast g)(i) = \sum_{0 \le j \lt i + 1} f(j) g(i - j) */ template <typename T, typename R = double> std::vector<T> fft_convolution(std::vector<T> const & a, std::vector<T> const & b) { assert (not a.empty() and not b.empty()); int m = a.size() + b.size() - 1; int n = pow(2, ceil(log2(m))); std::vector<std::complex<R> > x(n), y(n); copy(ALL(a), x.begin()); copy(ALL(b), y.begin()); fft_inplace(x, false); fft_inplace(y, false); std::vector<std::complex<R> > z(n); REP (i, n) { z[i] = x[i] * y[i]; } fft_inplace(z, true); std::vector<T> c(m); REP (i, m) { c[i] = std::is_integral<T>::value ? round(z[i].real() / n) : z[i].real() / n; } return c; }