This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub kmyk/competitive-programming-library
#include "modulus/permute.hpp"
#pragma once #include <cassert> #include "../modulus/mint.hpp" #include "../modulus/factorial.hpp" /** * @brief permutation / 順列 ${} _ n P _ r$ (前処理 $O(n)$ + $O(1)$) */ template <int32_t MOD> mint<MOD> permute(int n, int r) { assert (0 <= r and r <= n); return fact<MOD>(n) * inv_fact<MOD>(n - r); }
#line 2 "modulus/permute.hpp" #include <cassert> #line 2 "modulus/mint.hpp" #include <cstdint> #include <iostream> #line 4 "modulus/modpow.hpp" inline int32_t modpow(uint_fast64_t x, uint64_t k, int32_t MOD) { assert (/* 0 <= x and */ x < (uint_fast64_t)MOD); uint_fast64_t y = 1; for (; k; k >>= 1) { if (k & 1) (y *= x) %= MOD; (x *= x) %= MOD; } assert (/* 0 <= y and */ y < (uint_fast64_t)MOD); return y; } #line 2 "modulus/modinv.hpp" #include <algorithm> #line 5 "modulus/modinv.hpp" inline int32_t modinv_nocheck(int32_t value, int32_t MOD) { assert (0 <= value and value < MOD); if (value == 0) return -1; int64_t a = value, b = MOD; int64_t x = 0, y = 1; for (int64_t u = 1, v = 0; a; ) { int64_t q = b / a; x -= q * u; std::swap(x, u); y -= q * v; std::swap(y, v); b -= q * a; std::swap(b, a); } if (not (value * x + MOD * y == b and b == 1)) return -1; if (x < 0) x += MOD; assert (0 <= x and x < MOD); return x; } inline int32_t modinv(int32_t x, int32_t MOD) { int32_t y = modinv_nocheck(x, MOD); assert (y != -1); return y; } #line 6 "modulus/mint.hpp" /** * @brief quotient ring / 剰余環 $\mathbb{Z}/n\mathbb{Z}$ */ template <int32_t MOD> struct mint { int32_t value; mint() : value() {} mint(int64_t value_) : value(value_ < 0 ? value_ % MOD + MOD : value_ >= MOD ? value_ % MOD : value_) {} mint(int32_t value_, std::nullptr_t) : value(value_) {} explicit operator bool() const { return value; } inline mint<MOD> operator + (mint<MOD> other) const { return mint<MOD>(*this) += other; } inline mint<MOD> operator - (mint<MOD> other) const { return mint<MOD>(*this) -= other; } inline mint<MOD> operator * (mint<MOD> other) const { return mint<MOD>(*this) *= other; } inline mint<MOD> & operator += (mint<MOD> other) { this->value += other.value; if (this->value >= MOD) this->value -= MOD; return *this; } inline mint<MOD> & operator -= (mint<MOD> other) { this->value -= other.value; if (this->value < 0) this->value += MOD; return *this; } inline mint<MOD> & operator *= (mint<MOD> other) { this->value = (uint_fast64_t)this->value * other.value % MOD; return *this; } inline mint<MOD> operator - () const { return mint<MOD>(this->value ? MOD - this->value : 0, nullptr); } inline bool operator == (mint<MOD> other) const { return value == other.value; } inline bool operator != (mint<MOD> other) const { return value != other.value; } inline mint<MOD> pow(uint64_t k) const { return mint<MOD>(modpow(value, k, MOD), nullptr); } inline mint<MOD> inv() const { return mint<MOD>(modinv(value, MOD), nullptr); } inline mint<MOD> operator / (mint<MOD> other) const { return *this * other.inv(); } inline mint<MOD> & operator /= (mint<MOD> other) { return *this *= other.inv(); } }; template <int32_t MOD> mint<MOD> operator + (int64_t value, mint<MOD> n) { return mint<MOD>(value) + n; } template <int32_t MOD> mint<MOD> operator - (int64_t value, mint<MOD> n) { return mint<MOD>(value) - n; } template <int32_t MOD> mint<MOD> operator * (int64_t value, mint<MOD> n) { return mint<MOD>(value) * n; } template <int32_t MOD> mint<MOD> operator / (int64_t value, mint<MOD> n) { return mint<MOD>(value) / n; } template <int32_t MOD> std::istream & operator >> (std::istream & in, mint<MOD> & n) { int64_t value; in >> value; n = value; return in; } template <int32_t MOD> std::ostream & operator << (std::ostream & out, mint<MOD> n) { return out << n.value; } #line 2 "modulus/factorial.hpp" #include <vector> #line 4 "modulus/factorial.hpp" template <int32_t MOD> mint<MOD> fact(int n) { static std::vector<mint<MOD> > memo(1, 1); while (n >= memo.size()) { memo.push_back(memo.back() * mint<MOD>(memo.size())); } return memo[n]; } template <int32_t MOD> mint<MOD> inv_fact(int n) { static std::vector<mint<MOD> > memo; if (memo.size() <= n) { int l = memo.size(); int r = n * 1.3 + 100; memo.resize(r); memo[r - 1] = fact<MOD>(r - 1).inv(); for (int i = r - 2; i >= l; -- i) { memo[i] = memo[i + 1] * (i + 1); } } return memo[n]; } #line 5 "modulus/permute.hpp" /** * @brief permutation / 順列 ${} _ n P _ r$ (前処理 $O(n)$ + $O(1)$) */ template <int32_t MOD> mint<MOD> permute(int n, int r) { assert (0 <= r and r <= n); return fact<MOD>(n) * inv_fact<MOD>(n - r); }