This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub kmyk/competitive-programming-library
#include "modulus/number_theoretic_transformation_with_garner.hpp"
#pragma once #include <algorithm> #include <cassert> #include <cstdint> #include <tuple> #include <vector> #include "../modulus/mint.hpp" #include "../utils/macros.hpp" #include "../modulus/number_theoretic_transformation.hpp" template <int32_t MOD, int32_t MOD1, int32_t MOD2, int32_t MOD3> mint<MOD> garner_algorithm_template(mint<MOD1> a1, mint<MOD2> a2, mint<MOD3> a3) { static const auto r12 = mint<MOD2>(MOD1).inv(); static const auto r13 = mint<MOD3>(MOD1).inv(); static const auto r23 = mint<MOD3>(MOD2).inv(); a2 = (a2 - a1.value) * r12; a3 = (a3 - a1.value) * r13; a3 = (a3 - a2.value) * r23; return mint<MOD>(a1.value) + a2.value * mint<MOD>(MOD1) + a3.value * (mint<MOD>(MOD1) * mint<MOD>(MOD2)); } /** * @brief multiprecation on $\mathbb{Z}/n\mathbb{Z}[x]$ */ template <int32_t MOD> typename std::enable_if<not is_proth_prime<MOD>::value, std::vector<mint<MOD> > >::type ntt_convolution(const std::vector<mint<MOD> > & a, const std::vector<mint<MOD> > & b) { if (a.size() <= 32 or b.size() <= 32) { std::vector<mint<MOD> > c(a.size() + b.size() - 1); REP (i, a.size()) REP (j, b.size()) c[i + j] += a[i] * b[j]; return c; } constexpr int PRIMES[3] = { 1004535809, 998244353, 985661441 }; std::vector<mint<PRIMES[0]> > x0(a.size()); std::vector<mint<PRIMES[1]> > x1(a.size()); std::vector<mint<PRIMES[2]> > x2(a.size()); REP (i, a.size()) { x0[i] = a[i].value; x1[i] = a[i].value; x2[i] = a[i].value; } std::vector<mint<PRIMES[0]> > y0(b.size()); std::vector<mint<PRIMES[1]> > y1(b.size()); std::vector<mint<PRIMES[2]> > y2(b.size()); REP (j, b.size()) { y0[j] = b[j].value; y1[j] = b[j].value; y2[j] = b[j].value; } std::vector<mint<PRIMES[0]> > z0 = ntt_convolution<PRIMES[0]>(x0, y0); std::vector<mint<PRIMES[1]> > z1 = ntt_convolution<PRIMES[1]>(x1, y1); std::vector<mint<PRIMES[2]> > z2 = ntt_convolution<PRIMES[2]>(x2, y2); std::vector<mint<MOD> > c(z0.size()); REP (k, z0.size()) { c[k] = garner_algorithm_template<MOD>(z0[k], z1[k], z2[k]); } return c; }
#line 2 "modulus/number_theoretic_transformation_with_garner.hpp" #include <algorithm> #include <cassert> #include <cstdint> #include <tuple> #include <vector> #line 3 "modulus/mint.hpp" #include <iostream> #line 4 "modulus/modpow.hpp" inline int32_t modpow(uint_fast64_t x, uint64_t k, int32_t MOD) { assert (/* 0 <= x and */ x < (uint_fast64_t)MOD); uint_fast64_t y = 1; for (; k; k >>= 1) { if (k & 1) (y *= x) %= MOD; (x *= x) %= MOD; } assert (/* 0 <= y and */ y < (uint_fast64_t)MOD); return y; } #line 5 "modulus/modinv.hpp" inline int32_t modinv_nocheck(int32_t value, int32_t MOD) { assert (0 <= value and value < MOD); if (value == 0) return -1; int64_t a = value, b = MOD; int64_t x = 0, y = 1; for (int64_t u = 1, v = 0; a; ) { int64_t q = b / a; x -= q * u; std::swap(x, u); y -= q * v; std::swap(y, v); b -= q * a; std::swap(b, a); } if (not (value * x + MOD * y == b and b == 1)) return -1; if (x < 0) x += MOD; assert (0 <= x and x < MOD); return x; } inline int32_t modinv(int32_t x, int32_t MOD) { int32_t y = modinv_nocheck(x, MOD); assert (y != -1); return y; } #line 6 "modulus/mint.hpp" /** * @brief quotient ring / 剰余環 $\mathbb{Z}/n\mathbb{Z}$ */ template <int32_t MOD> struct mint { int32_t value; mint() : value() {} mint(int64_t value_) : value(value_ < 0 ? value_ % MOD + MOD : value_ >= MOD ? value_ % MOD : value_) {} mint(int32_t value_, std::nullptr_t) : value(value_) {} explicit operator bool() const { return value; } inline mint<MOD> operator + (mint<MOD> other) const { return mint<MOD>(*this) += other; } inline mint<MOD> operator - (mint<MOD> other) const { return mint<MOD>(*this) -= other; } inline mint<MOD> operator * (mint<MOD> other) const { return mint<MOD>(*this) *= other; } inline mint<MOD> & operator += (mint<MOD> other) { this->value += other.value; if (this->value >= MOD) this->value -= MOD; return *this; } inline mint<MOD> & operator -= (mint<MOD> other) { this->value -= other.value; if (this->value < 0) this->value += MOD; return *this; } inline mint<MOD> & operator *= (mint<MOD> other) { this->value = (uint_fast64_t)this->value * other.value % MOD; return *this; } inline mint<MOD> operator - () const { return mint<MOD>(this->value ? MOD - this->value : 0, nullptr); } inline bool operator == (mint<MOD> other) const { return value == other.value; } inline bool operator != (mint<MOD> other) const { return value != other.value; } inline mint<MOD> pow(uint64_t k) const { return mint<MOD>(modpow(value, k, MOD), nullptr); } inline mint<MOD> inv() const { return mint<MOD>(modinv(value, MOD), nullptr); } inline mint<MOD> operator / (mint<MOD> other) const { return *this * other.inv(); } inline mint<MOD> & operator /= (mint<MOD> other) { return *this *= other.inv(); } }; template <int32_t MOD> mint<MOD> operator + (int64_t value, mint<MOD> n) { return mint<MOD>(value) + n; } template <int32_t MOD> mint<MOD> operator - (int64_t value, mint<MOD> n) { return mint<MOD>(value) - n; } template <int32_t MOD> mint<MOD> operator * (int64_t value, mint<MOD> n) { return mint<MOD>(value) * n; } template <int32_t MOD> mint<MOD> operator / (int64_t value, mint<MOD> n) { return mint<MOD>(value) / n; } template <int32_t MOD> std::istream & operator >> (std::istream & in, mint<MOD> & n) { int64_t value; in >> value; n = value; return in; } template <int32_t MOD> std::ostream & operator << (std::ostream & out, mint<MOD> n) { return out << n.value; } #line 2 "utils/macros.hpp" #define REP(i, n) for (int i = 0; (i) < (int)(n); ++ (i)) #define REP3(i, m, n) for (int i = (m); (i) < (int)(n); ++ (i)) #define REP_R(i, n) for (int i = (int)(n) - 1; (i) >= 0; -- (i)) #define REP3R(i, m, n) for (int i = (int)(n) - 1; (i) >= (int)(m); -- (i)) #define ALL(x) std::begin(x), std::end(x) #line 9 "modulus/number_theoretic_transformation.hpp" template <int32_t PRIME> struct proth_prime {}; template <> struct proth_prime<1224736769> { static constexpr int a = 73, b = 24, g = 3; }; template <> struct proth_prime<1053818881> { static constexpr int a = 3 * 5 * 67, b = 20, g = 7; }; template <> struct proth_prime<1051721729> { static constexpr int a = 17 * 59, b = 20, g = 6; }; template <> struct proth_prime<1045430273> { static constexpr int a = 997, b = 20, g = 3; }; template <> struct proth_prime<1012924417> { static constexpr int a = 3 * 7 * 23, b = 21, g = 5; }; template <> struct proth_prime<1007681537> { static constexpr int a = 31 * 31, b = 20, g = 3; }; template <> struct proth_prime<1004535809> { static constexpr int a = 479, b = 21, g = 3; }; template <> struct proth_prime< 998244353> { static constexpr int a = 7 * 17, b = 23, g = 3; }; template <> struct proth_prime< 985661441> { static constexpr int a = 5 * 47, b = 22, g = 3; }; template <> struct proth_prime< 976224257> { static constexpr int a = 7 * 7 * 19, b = 20, g = 3; }; template <> struct proth_prime< 975175681> { static constexpr int a = 3 * 5 * 31, b = 21, g = 17; }; template <> struct proth_prime< 962592769> { static constexpr int a = 3 * 3 * 3 * 17, b = 21, g = 7; }; template <> struct proth_prime< 950009857> { static constexpr int a = 4 * 151, b = 21, g = 7; }; template <> struct proth_prime< 943718401> { static constexpr int a = 3 * 3 * 5 * 5, b = 22, g = 7; }; template <> struct proth_prime< 935329793> { static constexpr int a = 223, b = 22, g = 3; }; template <> struct proth_prime< 924844033> { static constexpr int a = 3 * 3 * 7 * 7, b = 21, g = 5; }; template <> struct proth_prime< 469762049> { static constexpr int a = 7, b = 26, g = 3; }; template <> struct proth_prime< 167772161> { static constexpr int a = 5, b = 25, g = 3; }; struct is_proth_prime_impl { template <int32_t PRIME, class T> static auto check(T *) -> decltype(proth_prime<PRIME>::g, std::true_type()); template <int32_t PRIME, class T> static auto check(...) -> std::false_type; }; template <int32_t PRIME> struct is_proth_prime : decltype(is_proth_prime_impl::check<PRIME, std::nullptr_t>(nullptr)) { }; /** * @brief Number Theoretic Transformation (NTT) for Proth primes * @note O(N log N) * @note radix-2, decimation-in-frequency, Cooley-Tukey * @note cache std::polar (~ 2x faster) */ template <int32_t PRIME> void ntt_inplace(std::vector<mint<PRIME> > & a, bool inverse) { const int n = a.size(); const int log2_n = __builtin_ctz(n); assert (n == 1 << log2_n); assert (log2_n <= proth_prime<PRIME>::b); // prepare rotors std::vector<mint<PRIME> > ep, iep; while ((int)ep.size() <= log2_n) { ep.push_back(mint<PRIME>(proth_prime<PRIME>::g).pow(mint<PRIME>(-1).value / (1 << ep.size()))); iep.push_back(ep.back().inv()); } // divide and conquer std::vector<mint<PRIME> > b(n); REP3 (i, 1, log2_n + 1) { int w = 1 << (log2_n - i); mint<PRIME> base = (inverse ? iep : ep)[i]; mint<PRIME> now = 1; for (int y = 0; y < n / 2; y += w) { REP (x, w) { auto l = a[y << 1 | x]; auto r = now * a[y << 1 | x | w]; b[y | x] = l + r; b[y | x | n >> 1] = l - r; } now *= base; } std::swap(a, b); } // div by n if inverse if (inverse) { auto n_inv = mint<PRIME>(n).inv(); REP (i, n) { a[i] *= n_inv; } } } /** * @brief multiprecation on $\mathbb{F}_p[x]$ for Proth primes * @note O(N log N) * @note (f \ast g)(i) = \sum_{0 \le j \lt i + 1} f(j) g(i - j) */ template <int32_t PRIME> typename std::enable_if<is_proth_prime<PRIME>::value, std::vector<mint<PRIME> > >::type ntt_convolution(const std::vector<mint<PRIME> > & a_, const std::vector<mint<PRIME> > & b_) { if (a_.size() <= 32 or b_.size() <= 32) { std::vector<mint<PRIME> > c(a_.size() + b_.size() - 1); REP (i, a_.size()) REP (j, b_.size()) c[i + j] += a_[i] * b_[j]; return c; } int m = a_.size() + b_.size() - 1; int n = (m == 1 ? 1 : 1 << (32 - __builtin_clz(m - 1))); auto a = a_; auto b = b_; a.resize(n); b.resize(n); ntt_inplace(a, false); ntt_inplace(b, false); REP (i, n) { a[i] *= b[i]; } ntt_inplace(a, true); a.resize(m); return a; } #line 10 "modulus/number_theoretic_transformation_with_garner.hpp" template <int32_t MOD, int32_t MOD1, int32_t MOD2, int32_t MOD3> mint<MOD> garner_algorithm_template(mint<MOD1> a1, mint<MOD2> a2, mint<MOD3> a3) { static const auto r12 = mint<MOD2>(MOD1).inv(); static const auto r13 = mint<MOD3>(MOD1).inv(); static const auto r23 = mint<MOD3>(MOD2).inv(); a2 = (a2 - a1.value) * r12; a3 = (a3 - a1.value) * r13; a3 = (a3 - a2.value) * r23; return mint<MOD>(a1.value) + a2.value * mint<MOD>(MOD1) + a3.value * (mint<MOD>(MOD1) * mint<MOD>(MOD2)); } /** * @brief multiprecation on $\mathbb{Z}/n\mathbb{Z}[x]$ */ template <int32_t MOD> typename std::enable_if<not is_proth_prime<MOD>::value, std::vector<mint<MOD> > >::type ntt_convolution(const std::vector<mint<MOD> > & a, const std::vector<mint<MOD> > & b) { if (a.size() <= 32 or b.size() <= 32) { std::vector<mint<MOD> > c(a.size() + b.size() - 1); REP (i, a.size()) REP (j, b.size()) c[i + j] += a[i] * b[j]; return c; } constexpr int PRIMES[3] = { 1004535809, 998244353, 985661441 }; std::vector<mint<PRIMES[0]> > x0(a.size()); std::vector<mint<PRIMES[1]> > x1(a.size()); std::vector<mint<PRIMES[2]> > x2(a.size()); REP (i, a.size()) { x0[i] = a[i].value; x1[i] = a[i].value; x2[i] = a[i].value; } std::vector<mint<PRIMES[0]> > y0(b.size()); std::vector<mint<PRIMES[1]> > y1(b.size()); std::vector<mint<PRIMES[2]> > y2(b.size()); REP (j, b.size()) { y0[j] = b[j].value; y1[j] = b[j].value; y2[j] = b[j].value; } std::vector<mint<PRIMES[0]> > z0 = ntt_convolution<PRIMES[0]>(x0, y0); std::vector<mint<PRIMES[1]> > z1 = ntt_convolution<PRIMES[1]>(x1, y1); std::vector<mint<PRIMES[2]> > z2 = ntt_convolution<PRIMES[2]>(x2, y2); std::vector<mint<MOD> > c(z0.size()); REP (k, z0.size()) { c[k] = garner_algorithm_template<MOD>(z0[k], z1[k], z2[k]); } return c; }