This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub kmyk/competitive-programming-library
#include "modulus/bell_number.hpp"
#pragma once #include "../modulus/mint.hpp" #include "../modulus/choose.hpp" #include "../modulus/stirling_number_of_the_second_kind_table.hpp" /** * @brief the Bell number (前処理 $O(NK)$ + $O(1)$) * @description the number of ways a set of n elements can be partitioned into nonempty subsets * @see http://mathworld.wolfram.com/BellNumber.html * @see https://oeis.org/A110 * @see https://ja.wikipedia.org/wiki/%E3%83%99%E3%83%AB%E6%95%B0 */ template <int PRIME> mint<PRIME> bell_number(int n, int k) { static std::vector<std::vector<mint<PRIME> > > memo; if (memo.size() <= n) { memo.resize(n + 1); } if (memo[n].empty()) { memo[n].push_back(0); } while (memo[n].size() <= k) { int i = memo[n].size(); memo[n].push_back(memo[n].back() + stirling_number_of_the_second_kind_table<PRIME>(n, i)); } return memo[n][k]; } template <int PRIME> mint<PRIME> unary_bell_number(int n) { return bell_number<PRIME>(n, n); }
#line 2 "modulus/mint.hpp" #include <cstdint> #include <iostream> #line 2 "modulus/modpow.hpp" #include <cassert> #line 4 "modulus/modpow.hpp" inline int32_t modpow(uint_fast64_t x, uint64_t k, int32_t MOD) { assert (/* 0 <= x and */ x < (uint_fast64_t)MOD); uint_fast64_t y = 1; for (; k; k >>= 1) { if (k & 1) (y *= x) %= MOD; (x *= x) %= MOD; } assert (/* 0 <= y and */ y < (uint_fast64_t)MOD); return y; } #line 2 "modulus/modinv.hpp" #include <algorithm> #line 5 "modulus/modinv.hpp" inline int32_t modinv_nocheck(int32_t value, int32_t MOD) { assert (0 <= value and value < MOD); if (value == 0) return -1; int64_t a = value, b = MOD; int64_t x = 0, y = 1; for (int64_t u = 1, v = 0; a; ) { int64_t q = b / a; x -= q * u; std::swap(x, u); y -= q * v; std::swap(y, v); b -= q * a; std::swap(b, a); } if (not (value * x + MOD * y == b and b == 1)) return -1; if (x < 0) x += MOD; assert (0 <= x and x < MOD); return x; } inline int32_t modinv(int32_t x, int32_t MOD) { int32_t y = modinv_nocheck(x, MOD); assert (y != -1); return y; } #line 6 "modulus/mint.hpp" /** * @brief quotient ring / 剰余環 $\mathbb{Z}/n\mathbb{Z}$ */ template <int32_t MOD> struct mint { int32_t value; mint() : value() {} mint(int64_t value_) : value(value_ < 0 ? value_ % MOD + MOD : value_ >= MOD ? value_ % MOD : value_) {} mint(int32_t value_, std::nullptr_t) : value(value_) {} explicit operator bool() const { return value; } inline mint<MOD> operator + (mint<MOD> other) const { return mint<MOD>(*this) += other; } inline mint<MOD> operator - (mint<MOD> other) const { return mint<MOD>(*this) -= other; } inline mint<MOD> operator * (mint<MOD> other) const { return mint<MOD>(*this) *= other; } inline mint<MOD> & operator += (mint<MOD> other) { this->value += other.value; if (this->value >= MOD) this->value -= MOD; return *this; } inline mint<MOD> & operator -= (mint<MOD> other) { this->value -= other.value; if (this->value < 0) this->value += MOD; return *this; } inline mint<MOD> & operator *= (mint<MOD> other) { this->value = (uint_fast64_t)this->value * other.value % MOD; return *this; } inline mint<MOD> operator - () const { return mint<MOD>(this->value ? MOD - this->value : 0, nullptr); } inline bool operator == (mint<MOD> other) const { return value == other.value; } inline bool operator != (mint<MOD> other) const { return value != other.value; } inline mint<MOD> pow(uint64_t k) const { return mint<MOD>(modpow(value, k, MOD), nullptr); } inline mint<MOD> inv() const { return mint<MOD>(modinv(value, MOD), nullptr); } inline mint<MOD> operator / (mint<MOD> other) const { return *this * other.inv(); } inline mint<MOD> & operator /= (mint<MOD> other) { return *this *= other.inv(); } }; template <int32_t MOD> mint<MOD> operator + (int64_t value, mint<MOD> n) { return mint<MOD>(value) + n; } template <int32_t MOD> mint<MOD> operator - (int64_t value, mint<MOD> n) { return mint<MOD>(value) - n; } template <int32_t MOD> mint<MOD> operator * (int64_t value, mint<MOD> n) { return mint<MOD>(value) * n; } template <int32_t MOD> mint<MOD> operator / (int64_t value, mint<MOD> n) { return mint<MOD>(value) / n; } template <int32_t MOD> std::istream & operator >> (std::istream & in, mint<MOD> & n) { int64_t value; in >> value; n = value; return in; } template <int32_t MOD> std::ostream & operator << (std::ostream & out, mint<MOD> n) { return out << n.value; } #line 2 "modulus/factorial.hpp" #include <vector> #line 4 "modulus/factorial.hpp" template <int32_t MOD> mint<MOD> fact(int n) { static std::vector<mint<MOD> > memo(1, 1); while (n >= memo.size()) { memo.push_back(memo.back() * mint<MOD>(memo.size())); } return memo[n]; } template <int32_t MOD> mint<MOD> inv_fact(int n) { static std::vector<mint<MOD> > memo; if (memo.size() <= n) { int l = memo.size(); int r = n * 1.3 + 100; memo.resize(r); memo[r - 1] = fact<MOD>(r - 1).inv(); for (int i = r - 2; i >= l; -- i) { memo[i] = memo[i + 1] * (i + 1); } } return memo[n]; } #line 5 "modulus/choose.hpp" /** * @brief combination / 組合せ ${} _ n C _ r$ (前処理 $O(n)$ + $O(1)$) */ template <int32_t MOD> mint<MOD> choose(int n, int r) { assert (0 <= r and r <= n); return fact<MOD>(n) * inv_fact<MOD>(n - r) * inv_fact<MOD>(r); } #line 2 "utils/macros.hpp" #define REP(i, n) for (int i = 0; (i) < (int)(n); ++ (i)) #define REP3(i, m, n) for (int i = (m); (i) < (int)(n); ++ (i)) #define REP_R(i, n) for (int i = (int)(n) - 1; (i) >= 0; -- (i)) #define REP3R(i, m, n) for (int i = (int)(n) - 1; (i) >= (int)(m); -- (i)) #define ALL(x) std::begin(x), std::end(x) #line 6 "modulus/stirling_number_of_the_second_kind_table.hpp" /** * @brief the Stirling number of the second kind (前処理 $O(NK)$ + $O(1)$) * @description the number of ways of partitioning a set of n elements into k nonempty sets * @see http://mathworld.wolfram.com/StirlingNumberoftheSecondKind.html * @see http://oeis.org/A008277 * @see https://ja.wikipedia.org/wiki/%E3%82%B9%E3%82%BF%E3%83%BC%E3%83%AA%E3%83%B3%E3%82%B0%E6%95%B0#.E7.AC.AC2.E7.A8.AE.E3.82.B9.E3.82.BF.E3.83.BC.E3.83.AA.E3.83.B3.E3.82.B0.E6.95.B0 */ template <int MOD> mint<MOD> stirling_number_of_the_second_kind_table(int n, int k) { assert (0 <= n and 0 <= k); if (n < k) return 0; if (n == k) return 1; if (k == 0) return 0; static std::vector<std::vector<mint<MOD> > > memo; if (memo.size() <= n) { int l = memo.size(); memo.resize(n + 1); REP3 (i, l, n + 1) { memo[i].resize(i); } } if (memo[n][k]) return memo[n][k]; return memo[n][k] = stirling_number_of_the_second_kind_table<MOD>(n - 1, k - 1) + stirling_number_of_the_second_kind_table<MOD>(n - 1, k) * k; } #line 5 "modulus/bell_number.hpp" /** * @brief the Bell number (前処理 $O(NK)$ + $O(1)$) * @description the number of ways a set of n elements can be partitioned into nonempty subsets * @see http://mathworld.wolfram.com/BellNumber.html * @see https://oeis.org/A110 * @see https://ja.wikipedia.org/wiki/%E3%83%99%E3%83%AB%E6%95%B0 */ template <int PRIME> mint<PRIME> bell_number(int n, int k) { static std::vector<std::vector<mint<PRIME> > > memo; if (memo.size() <= n) { memo.resize(n + 1); } if (memo[n].empty()) { memo[n].push_back(0); } while (memo[n].size() <= k) { int i = memo[n].size(); memo[n].push_back(memo[n].back() + stirling_number_of_the_second_kind_table<PRIME>(n, i)); } return memo[n][k]; } template <int PRIME> mint<PRIME> unary_bell_number(int n) { return bell_number<PRIME>(n, n); }