This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub kmyk/competitive-programming-library
#define PROBLEM "http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=2405" #include <cstdio> #include "../graph/tree_decomposition.hpp" #include "../modulus/mint.hpp" #include "../utils/macros.hpp" using namespace std; constexpr int MOD = 1000003; mint<MOD> solve(int n, int m, vector<vector<int> > & g) { // add the implicitly given edges to g REP (x, n) { g[x].push_back((x + 1) % n); g[(x + 1) % n].push_back(x); } REP (x, n) { sort(ALL(g[x])); g[x].erase(unique(ALL(g[x])), g[x].end()); } // get a tree decomposition auto [parent, bags_] = get_tree_decomposition(g); auto nice = get_nice_tree_decomposition(parent, bags_); // dp on a nice tree decomposition vector<set<int> > bags(nice.size()); auto index = [&](int a, int x) { assert (bags[a].count(x)); return distance(bags[a].begin(), bags[a].find(x)); }; auto translate = [&](int a, int s, int b) { int t = 0; for (int x : bags[a]) { if (bags[b].count(x) and (s & (1 << index(a, x)))) { t |= 1 << index(b, x); } } return t; }; vector<vector<mint<MOD> > > dp(nice.size()); REP (a, nice.size()) { auto [tag, x, b] = nice[a]; if (tag == LEAF) { bags[a].insert(x); dp[a].resize(1 << bags[a].size()); dp[a][0] += 1; } else if (tag == INTRODUCE) { bags[a] = bags[b]; bags[a].insert(x); assert (bags[a].size() <= 3); dp[a].resize(1 << bags[a].size()); REP (t, dp[b].size()) { int s = translate(b, t, a); dp[a][s] += dp[b][t]; } } else if (tag == FORGET) { assert (bags[b].count(x)); bags[a] = bags[b]; bags[a].erase(x); dp[a].resize(1 << bags[a].size()); REP (t, dp[b].size()) { int s = translate(b, t, a); if (t & (1 << index(b, x))) { dp[a][s] += dp[b][t]; } else { for (int y : g[x]) { if (bags[a].count(y) and not (s & (1 << index(a, y)))) { int u = s | (1 << index(a, y)); dp[a][u] += dp[b][t]; } } } } } else if (tag == JOIN) { assert (bags[x] == bags[b]); bags[a] = bags[b]; dp[a].resize(1 << bags[a].size()); REP (s, dp[a].size()) { REP (t, dp[a].size()) if ((s & t) == 0) { dp[a][s | t] += dp[x][s] * dp[b][t]; } } } } return dp.back().back(); } int main() { while (true) { int n, m; scanf("%d%d", &n, &m); if (n == 0 and m == 0) break; vector<vector<int> > g(n); REP (i, m) { int a, b; scanf("%d%d", &a, &b); -- a; -- b; g[a].push_back(b); g[b].push_back(a); } mint<MOD> cnt = solve(n, m, g); printf("%d\n", cnt.value); } return 0; }
#line 1 "graph/tree_decomposition.aoj_2405.test.cpp" #define PROBLEM "http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=2405" #include <cstdio> #line 2 "graph/tree_decomposition.hpp" #include <algorithm> #include <cassert> #line 5 "graph/tree_decomposition.hpp" #include <cstdint> #include <functional> #include <set> #include <stack> #include <tuple> #include <unordered_set> #include <utility> #include <vector> #line 2 "utils/macros.hpp" #define REP(i, n) for (int i = 0; (i) < (int)(n); ++ (i)) #define REP3(i, m, n) for (int i = (m); (i) < (int)(n); ++ (i)) #define REP_R(i, n) for (int i = (int)(n) - 1; (i) >= 0; -- (i)) #define REP3R(i, m, n) for (int i = (int)(n) - 1; (i) >= (int)(m); -- (i)) #define ALL(x) std::begin(x), std::end(x) #line 14 "graph/tree_decomposition.hpp" /** * @brief 木分解 (木幅 $t \le 2$) * @docs graph/tree_decomposition.md * @note $O(N)$ ? * @see https://ei1333.hateblo.jp/entry/2020/02/12/150319 * @arg g is a simple connected graph $G = (V, E)$ whose treewidth $t \le 2$ * @return a decomposed tree $T = (I, F)$ as a triple of (the root, the list of children $c : I \to \mathcal{P} \to I$, what vertices are contained $X : I \to \mathcal{P}(V)$) */ inline std::pair<std::vector<int>, std::vector<std::vector<int> > > get_tree_decomposition(const std::vector<std::vector<int> > & g) { int n = g.size(); // prepare the info about g std::vector<int> used(n, -1); std::vector<int> degree(n); std::unordered_set<int64_t> edges; auto pack = [&](int x, int y) { if (x > y) std::swap(x, y); return ((int64_t)x << 32) | y; }; REP (x, n) { degree[x] = g[x].size(); for (int y : g[x]) if (x < y) { edges.insert(pack(x, y)); } } // prepare the info about t std::vector<int> parent; std::vector<int> antecedent; std::function<int (int)> find_root = [&](int a) { // union-find tree with only path-compression return (antecedent[a] == -1 ? a : antecedent[a] = find_root(antecedent[a])); }; std::vector<std::vector<int> > bags; // construct the tree with a stack std::stack<int> stk; REP (x, n) { if (g[x].size() <= 2) { stk.push(x); } } while (not stk.empty()) { int x = stk.top(); stk.pop(); if (degree[x] == 0) continue; used[x] = bags.size(); parent.push_back(-1); antecedent.push_back(-1); bags.emplace_back(); auto & bag = bags.back(); // make the new bag bag.push_back(x); for (int y : g[x]) { if (used[y] == -1) { // add a vertex y into the new bag bag.push_back(y); } else if (used[y] >= 0) { // connect a bag used[y] as a child int root = find_root(used[y]); if (root == used[x]) { // nop } else if (bags[used[y]].size() == 2) { // the sub-bag is removing a vertex if (parent[root] == -1) { parent[root] = antecedent[root] = used[x]; } assert (bags[used[y]][1] == x); bag.push_back(y); } else if (bags[used[y]].size() == 3) { // the sub-bag is removing an edge if (parent[root] == -1) { parent[root] = antecedent[root] = used[x]; } assert (bags[root][1] == x or bags[root][2] == x); bag.push_back(bags[root][1] ^ bags[root][2] ^ x); used[bags[root][0]] = used[x]; } else { assert (false); } } else { // nop } } std::sort(bag.begin() + 1, bag.end()); bag.erase(std::unique(bag.begin() + 1, bag.end()), bag.end()); assert (bag.size() == degree[x] + 1); // remove and add edges auto decr = [&](int y) { -- degree[y]; if (degree[y] == 2) { stk.push(y); } }; if (degree[x] == 1) { decr(bag[1]); } if (degree[x] == 2) { if (not edges.insert(pack(bag[1], bag[2])).second) { decr(bag[1]); decr(bag[2]); } } degree[x] = 0; } if (std::count(ALL(degree), 0) != n) return std::make_pair(std::vector<int>(), std::vector<std::vector<int> >()); assert (std::count(ALL(parent), -1) == 1); return std::make_pair(parent, bags); } enum nice_tree_decomposition_tag { LEAF, INTRODUCE, FORGET, JOIN, }; /** * @note $O(t N)$ */ inline std::vector<std::tuple<nice_tree_decomposition_tag, int, int> > get_nice_tree_decomposition(const std::vector<int> & parent, const std::vector<std::vector<int> > & bags) { assert (not parent.empty()); assert (parent.back() == -1); // assume that vertices are topologically sorted and reversed int n = parent.size(); std::vector<std::vector<int> > children(n); std::vector<int> node(n, -1); std::vector<std::tuple<nice_tree_decomposition_tag, int, int> > nice; REP (a, n) { assert (not bags[a].empty()); if (children[a].empty()) { for (int x : bags[a]) { if (x == bags[a].front()) { nice.emplace_back(LEAF, x, -1); } else { nice.emplace_back(INTRODUCE, x, nice.size() - 1); } } node[a] = nice.size() - 1; } else { for (int b : children[a]) { for (int y : bags[b]) { if (not count(ALL(bags[a]), y)) { nice.emplace_back(FORGET, y, node[b]); node[b] = nice.size() - 1; } } for (int x : bags[a]) { if (not count(ALL(bags[b]), x)) { nice.emplace_back(INTRODUCE, x, node[b]); node[b] = nice.size() - 1; } } if (b == children[a].front()) { std::swap(node[a], node[b]); } else { nice.emplace_back(JOIN, node[a], node[b]); node[a] = nice.size() - 1; } } } if (parent[a] != -1) { children[parent[a]].push_back(a); } }; for (int x : bags.back()) { nice.emplace_back(FORGET, x, node.back()); node.back() = nice.size() - 1; } return nice; } #line 3 "modulus/mint.hpp" #include <iostream> #line 4 "modulus/modpow.hpp" inline int32_t modpow(uint_fast64_t x, uint64_t k, int32_t MOD) { assert (/* 0 <= x and */ x < (uint_fast64_t)MOD); uint_fast64_t y = 1; for (; k; k >>= 1) { if (k & 1) (y *= x) %= MOD; (x *= x) %= MOD; } assert (/* 0 <= y and */ y < (uint_fast64_t)MOD); return y; } #line 5 "modulus/modinv.hpp" inline int32_t modinv_nocheck(int32_t value, int32_t MOD) { assert (0 <= value and value < MOD); if (value == 0) return -1; int64_t a = value, b = MOD; int64_t x = 0, y = 1; for (int64_t u = 1, v = 0; a; ) { int64_t q = b / a; x -= q * u; std::swap(x, u); y -= q * v; std::swap(y, v); b -= q * a; std::swap(b, a); } if (not (value * x + MOD * y == b and b == 1)) return -1; if (x < 0) x += MOD; assert (0 <= x and x < MOD); return x; } inline int32_t modinv(int32_t x, int32_t MOD) { int32_t y = modinv_nocheck(x, MOD); assert (y != -1); return y; } #line 6 "modulus/mint.hpp" /** * @brief quotient ring / 剰余環 $\mathbb{Z}/n\mathbb{Z}$ */ template <int32_t MOD> struct mint { int32_t value; mint() : value() {} mint(int64_t value_) : value(value_ < 0 ? value_ % MOD + MOD : value_ >= MOD ? value_ % MOD : value_) {} mint(int32_t value_, std::nullptr_t) : value(value_) {} explicit operator bool() const { return value; } inline mint<MOD> operator + (mint<MOD> other) const { return mint<MOD>(*this) += other; } inline mint<MOD> operator - (mint<MOD> other) const { return mint<MOD>(*this) -= other; } inline mint<MOD> operator * (mint<MOD> other) const { return mint<MOD>(*this) *= other; } inline mint<MOD> & operator += (mint<MOD> other) { this->value += other.value; if (this->value >= MOD) this->value -= MOD; return *this; } inline mint<MOD> & operator -= (mint<MOD> other) { this->value -= other.value; if (this->value < 0) this->value += MOD; return *this; } inline mint<MOD> & operator *= (mint<MOD> other) { this->value = (uint_fast64_t)this->value * other.value % MOD; return *this; } inline mint<MOD> operator - () const { return mint<MOD>(this->value ? MOD - this->value : 0, nullptr); } inline bool operator == (mint<MOD> other) const { return value == other.value; } inline bool operator != (mint<MOD> other) const { return value != other.value; } inline mint<MOD> pow(uint64_t k) const { return mint<MOD>(modpow(value, k, MOD), nullptr); } inline mint<MOD> inv() const { return mint<MOD>(modinv(value, MOD), nullptr); } inline mint<MOD> operator / (mint<MOD> other) const { return *this * other.inv(); } inline mint<MOD> & operator /= (mint<MOD> other) { return *this *= other.inv(); } }; template <int32_t MOD> mint<MOD> operator + (int64_t value, mint<MOD> n) { return mint<MOD>(value) + n; } template <int32_t MOD> mint<MOD> operator - (int64_t value, mint<MOD> n) { return mint<MOD>(value) - n; } template <int32_t MOD> mint<MOD> operator * (int64_t value, mint<MOD> n) { return mint<MOD>(value) * n; } template <int32_t MOD> mint<MOD> operator / (int64_t value, mint<MOD> n) { return mint<MOD>(value) / n; } template <int32_t MOD> std::istream & operator >> (std::istream & in, mint<MOD> & n) { int64_t value; in >> value; n = value; return in; } template <int32_t MOD> std::ostream & operator << (std::ostream & out, mint<MOD> n) { return out << n.value; } #line 6 "graph/tree_decomposition.aoj_2405.test.cpp" using namespace std; constexpr int MOD = 1000003; mint<MOD> solve(int n, int m, vector<vector<int> > & g) { // add the implicitly given edges to g REP (x, n) { g[x].push_back((x + 1) % n); g[(x + 1) % n].push_back(x); } REP (x, n) { sort(ALL(g[x])); g[x].erase(unique(ALL(g[x])), g[x].end()); } // get a tree decomposition auto [parent, bags_] = get_tree_decomposition(g); auto nice = get_nice_tree_decomposition(parent, bags_); // dp on a nice tree decomposition vector<set<int> > bags(nice.size()); auto index = [&](int a, int x) { assert (bags[a].count(x)); return distance(bags[a].begin(), bags[a].find(x)); }; auto translate = [&](int a, int s, int b) { int t = 0; for (int x : bags[a]) { if (bags[b].count(x) and (s & (1 << index(a, x)))) { t |= 1 << index(b, x); } } return t; }; vector<vector<mint<MOD> > > dp(nice.size()); REP (a, nice.size()) { auto [tag, x, b] = nice[a]; if (tag == LEAF) { bags[a].insert(x); dp[a].resize(1 << bags[a].size()); dp[a][0] += 1; } else if (tag == INTRODUCE) { bags[a] = bags[b]; bags[a].insert(x); assert (bags[a].size() <= 3); dp[a].resize(1 << bags[a].size()); REP (t, dp[b].size()) { int s = translate(b, t, a); dp[a][s] += dp[b][t]; } } else if (tag == FORGET) { assert (bags[b].count(x)); bags[a] = bags[b]; bags[a].erase(x); dp[a].resize(1 << bags[a].size()); REP (t, dp[b].size()) { int s = translate(b, t, a); if (t & (1 << index(b, x))) { dp[a][s] += dp[b][t]; } else { for (int y : g[x]) { if (bags[a].count(y) and not (s & (1 << index(a, y)))) { int u = s | (1 << index(a, y)); dp[a][u] += dp[b][t]; } } } } } else if (tag == JOIN) { assert (bags[x] == bags[b]); bags[a] = bags[b]; dp[a].resize(1 << bags[a].size()); REP (s, dp[a].size()) { REP (t, dp[a].size()) if ((s & t) == 0) { dp[a][s | t] += dp[x][s] * dp[b][t]; } } } } return dp.back().back(); } int main() { while (true) { int n, m; scanf("%d%d", &n, &m); if (n == 0 and m == 0) break; vector<vector<int> > g(n); REP (i, m) { int a, b; scanf("%d%d", &a, &b); -- a; -- b; g[a].push_back(b); g[b].push_back(a); } mint<MOD> cnt = solve(n, m, g); printf("%d\n", cnt.value); } return 0; }