This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub kmyk/competitive-programming-library
#include "graph/minimum-cost-flow.hpp"
#pragma once #include <numeric> #include <queue> #include <utility> #include <vector> #include "../utils/macros.hpp" namespace min_cost_flow { template <class T> struct edge { int to; T cap, cost; int rev; }; template <class T> void add_edge(std::vector<std::vector<edge<T> > > & graph, int from, int to, T cap, T cost) { graph[from].push_back((edge<T>) { to, cap, cost, int(graph[ to].size()) }); graph[ to].push_back((edge<T>) { from, 0, - cost, int(graph[from].size()) - 1 }); } template <class T> using reversed_priority_queue = std::priority_queue<T, std::vector<T>, std::greater<T> >; /** * @brief minimum cost flow / 最小費用流 (primal-dual) * @note mainly $O(V^2 U C)$ for U is the sum of capacities and $C$ is the sum of costs. and additional $O(V E)$ if negative edges exist */ template <class T> T run_destructive(std::vector<std::vector<edge<T> > > & graph, int src, int dst, T flow) { T result = 0; std::vector<T> potential(graph.size()); if (0 < flow) { // initialize potential when negative edges exist (slow). you can remove this if unnecessary std::fill(ALL(potential), std::numeric_limits<T>::max()); potential[src] = 0; while (true) { // Bellman-Ford algorithm bool updated = false; REP (e_from, graph.size()) for (auto & e : graph[e_from]) if (e.cap) { if (potential[e_from] == std::numeric_limits<T>::max()) continue; if (potential[e.to] > potential[e_from] + e.cost) { potential[e.to] = potential[e_from] + e.cost; // min updated = true; } } if (not updated) break; } } while (0 < flow) { // update potential using dijkstra std::vector<T> distance(graph.size(), std::numeric_limits<T>::max()); // minimum distance std::vector<int> prev_v(graph.size()); // constitute a single-linked-list represents the flow-path std::vector<int> prev_e(graph.size()); { // initialize distance and prev_{v,e} reversed_priority_queue<std::pair<T, int> > que; // distance * vertex distance[src] = 0; que.emplace(0, src); while (not que.empty()) { // Dijkstra's algorithm T d; int v; std::tie(d, v) = que.top(); que.pop(); if (potential[v] == std::numeric_limits<T>::max()) continue; // for unreachable nodes if (distance[v] < d) continue; // look round the vertex REP (e_index, graph[v].size()) { // consider updating edge<T> e = graph[v][e_index]; int w = e.to; if (potential[w] == std::numeric_limits<T>::max()) continue; T d1 = distance[v] + e.cost + potential[v] - potential[w]; // updated distance if (0 < e.cap and d1 < distance[e.to]) { distance[w] = d1; prev_v[w] = v; prev_e[w] = e_index; que.emplace(d1, w); } } } } if (distance[dst] == std::numeric_limits<T>::max()) return -1; // no such flow REP (v, graph.size()) { if (potential[v] == std::numeric_limits<T>::max()) continue; potential[v] += distance[v]; } // finish updating the potential // let flow on the src->dst minimum path T delta = flow; // capacity of the path for (int v = dst; v != src; v = prev_v[v]) { delta = std::min(delta, graph[prev_v[v]][prev_e[v]].cap); } flow -= delta; result += delta * potential[dst]; for (int v = dst; v != src; v = prev_v[v]) { edge<T> & e = graph[prev_v[v]][prev_e[v]]; // reference e.cap -= delta; graph[v][e.rev].cap += delta; } } return result; } }
#line 2 "graph/minimum-cost-flow.hpp" #include <numeric> #include <queue> #include <utility> #include <vector> #line 2 "utils/macros.hpp" #define REP(i, n) for (int i = 0; (i) < (int)(n); ++ (i)) #define REP3(i, m, n) for (int i = (m); (i) < (int)(n); ++ (i)) #define REP_R(i, n) for (int i = (int)(n) - 1; (i) >= 0; -- (i)) #define REP3R(i, m, n) for (int i = (int)(n) - 1; (i) >= (int)(m); -- (i)) #define ALL(x) std::begin(x), std::end(x) #line 7 "graph/minimum-cost-flow.hpp" namespace min_cost_flow { template <class T> struct edge { int to; T cap, cost; int rev; }; template <class T> void add_edge(std::vector<std::vector<edge<T> > > & graph, int from, int to, T cap, T cost) { graph[from].push_back((edge<T>) { to, cap, cost, int(graph[ to].size()) }); graph[ to].push_back((edge<T>) { from, 0, - cost, int(graph[from].size()) - 1 }); } template <class T> using reversed_priority_queue = std::priority_queue<T, std::vector<T>, std::greater<T> >; /** * @brief minimum cost flow / 最小費用流 (primal-dual) * @note mainly $O(V^2 U C)$ for U is the sum of capacities and $C$ is the sum of costs. and additional $O(V E)$ if negative edges exist */ template <class T> T run_destructive(std::vector<std::vector<edge<T> > > & graph, int src, int dst, T flow) { T result = 0; std::vector<T> potential(graph.size()); if (0 < flow) { // initialize potential when negative edges exist (slow). you can remove this if unnecessary std::fill(ALL(potential), std::numeric_limits<T>::max()); potential[src] = 0; while (true) { // Bellman-Ford algorithm bool updated = false; REP (e_from, graph.size()) for (auto & e : graph[e_from]) if (e.cap) { if (potential[e_from] == std::numeric_limits<T>::max()) continue; if (potential[e.to] > potential[e_from] + e.cost) { potential[e.to] = potential[e_from] + e.cost; // min updated = true; } } if (not updated) break; } } while (0 < flow) { // update potential using dijkstra std::vector<T> distance(graph.size(), std::numeric_limits<T>::max()); // minimum distance std::vector<int> prev_v(graph.size()); // constitute a single-linked-list represents the flow-path std::vector<int> prev_e(graph.size()); { // initialize distance and prev_{v,e} reversed_priority_queue<std::pair<T, int> > que; // distance * vertex distance[src] = 0; que.emplace(0, src); while (not que.empty()) { // Dijkstra's algorithm T d; int v; std::tie(d, v) = que.top(); que.pop(); if (potential[v] == std::numeric_limits<T>::max()) continue; // for unreachable nodes if (distance[v] < d) continue; // look round the vertex REP (e_index, graph[v].size()) { // consider updating edge<T> e = graph[v][e_index]; int w = e.to; if (potential[w] == std::numeric_limits<T>::max()) continue; T d1 = distance[v] + e.cost + potential[v] - potential[w]; // updated distance if (0 < e.cap and d1 < distance[e.to]) { distance[w] = d1; prev_v[w] = v; prev_e[w] = e_index; que.emplace(d1, w); } } } } if (distance[dst] == std::numeric_limits<T>::max()) return -1; // no such flow REP (v, graph.size()) { if (potential[v] == std::numeric_limits<T>::max()) continue; potential[v] += distance[v]; } // finish updating the potential // let flow on the src->dst minimum path T delta = flow; // capacity of the path for (int v = dst; v != src; v = prev_v[v]) { delta = std::min(delta, graph[prev_v[v]][prev_e[v]].cap); } flow -= delta; result += delta * potential[dst]; for (int v = dst; v != src; v = prev_v[v]) { edge<T> & e = graph[prev_v[v]][prev_e[v]]; // reference e.cap -= delta; graph[v][e.rev].cap += delta; } } return result; } }