This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub kmyk/competitive-programming-library
#define PROBLEM "https://yukicoder.me/problems/no/1254" #include <algorithm> #include <cstdio> #include <map> #include <utility> #include <vector> #include "../utils/macros.hpp" #include "../graph/functional_graph.hpp" using namespace std; vector<int> solve(int n, const vector<pair<int, int> >& edges) { vector<vector<int> > g(n); map<pair<int, int>, int> lookup; REP (i, edges.size()) { auto [a, b] = edges[i]; g[a].push_back(b); g[b].push_back(a); lookup[make_pair(a, b)] = i; lookup[make_pair(b, a)] = i; } auto cycle = get_namori_cycle(g); vector<int> ans; REP (i, cycle.size()) { int a = cycle[i]; int b = cycle[(i + 1) % cycle.size()]; ans.push_back(lookup[make_pair(a, b)]); } sort(ALL(ans)); return ans; } int main() { int n; scanf("%d", &n); vector<pair<int, int> > edges(n); REP (i, n) { int a, b; scanf("%d%d", &a, &b); -- a; -- b; edges[i] = make_pair(a, b); } vector<int> ans = solve(n, edges); printf("%d\n", (int)ans.size()); REP (i, ans.size()) { printf("%d%c", ans[i] + 1, i + 1 < ans.size() ? ' ' : '\n'); } return 0; }
#line 1 "graph/functional_graph.yuki1254.test.cpp" #define PROBLEM "https://yukicoder.me/problems/no/1254" #include <algorithm> #include <cstdio> #include <map> #include <utility> #include <vector> #line 2 "utils/macros.hpp" #define REP(i, n) for (int i = 0; (i) < (int)(n); ++ (i)) #define REP3(i, m, n) for (int i = (m); (i) < (int)(n); ++ (i)) #define REP_R(i, n) for (int i = (int)(n) - 1; (i) >= 0; -- (i)) #define REP3R(i, m, n) for (int i = (int)(n) - 1; (i) >= (int)(m); -- (i)) #define ALL(x) std::begin(x), std::end(x) #line 2 "graph/functional_graph.hpp" #include <cassert> #include <deque> #include <functional> #line 6 "graph/functional_graph.hpp" /** * @brief Namori cycle / なもり閉路 * @param g a simple connected undirected graph with |E| = |V| */ std::deque<int> get_namori_cycle(const std::vector<std::vector<int> >& g) { int n = g.size(); { // check the namori-ty int m = 0; REP (i, n) { m += g[i].size(); } assert (m == 2 * n); } std::deque<int> stk; std::vector<bool> used(n); auto go = [&](auto&& go, int i, int parent) -> int { if (used[i]) return i; stk.push_back(i); used[i] = true; for (int j : g[i]) if (j != parent) { int k = go(go, j, i); if (k != -1) return k; } assert (stk.back() == i); stk.pop_back(); used[i] = false; return -1; }; int i = go(go, 0, -1); assert (i != -1); // fails if the graph is not simple while (stk.front() != i) { stk.pop_front(); } return stk; } #line 9 "graph/functional_graph.yuki1254.test.cpp" using namespace std; vector<int> solve(int n, const vector<pair<int, int> >& edges) { vector<vector<int> > g(n); map<pair<int, int>, int> lookup; REP (i, edges.size()) { auto [a, b] = edges[i]; g[a].push_back(b); g[b].push_back(a); lookup[make_pair(a, b)] = i; lookup[make_pair(b, a)] = i; } auto cycle = get_namori_cycle(g); vector<int> ans; REP (i, cycle.size()) { int a = cycle[i]; int b = cycle[(i + 1) % cycle.size()]; ans.push_back(lookup[make_pair(a, b)]); } sort(ALL(ans)); return ans; } int main() { int n; scanf("%d", &n); vector<pair<int, int> > edges(n); REP (i, n) { int a, b; scanf("%d%d", &a, &b); -- a; -- b; edges[i] = make_pair(a, b); } vector<int> ans = solve(n, edges); printf("%d\n", (int)ans.size()); REP (i, ans.size()) { printf("%d%c", ans[i] + 1, i + 1 < ans.size() ? ' ' : '\n'); } return 0; }