This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub kmyk/competitive-programming-library
#include "graph/euler_graph.hpp"
#pragma once #include <algorithm> #include <tuple> #include <utility> #include <vector> #include "../utils/macros.hpp" /** * @param g must be an undirected graph. Loops and multiple edges are acceptable. * @param root specifies the component to find an Eulerian cycle * @return indices of edges. It's empty if g is not a Eulerian graph. */ std::vector<int> find_eulerian_cycle_with_root(int n, const std::vector<std::pair<int, int> > & edges, int root) { int m = edges.size(); std::vector<std::vector<int> > g(n); std::vector<int> degree(n); REP (i, m) { int x, y; std::tie(x, y) = edges[i]; g[x].push_back(i); g[y].push_back(i); ++ degree[x]; ++ degree[y]; // This is required even if x == y } std::vector<int> order; std::vector<bool> used(m); auto go = [&](auto && go, int x) -> bool { if (degree[x] % 2 != 0) { return false; } while (not g[x].empty()) { int i = g[x].back(); g[x].pop_back(); if (not used[i]) { used[i] = true; int y = x ^ edges[i].first ^ edges[i].second; if (not go(go, y)) { return false; } order.push_back(i); } } return true; }; if (not go(go, root)) { return std::vector<int>(); // not a Eulerian graph } return order; } /** * @brief Eulerian cycle (無向, 復元) * @param g must be an undirected and connected graph. * @return indices of edges. It's empty if g is not a Eulerian graph. */ std::vector<int> find_eulerian_cycle(int n, const std::vector<std::pair<int, int> > & edges) { auto order = find_eulerian_cycle_with_root(n, edges, 0); if (order.size() != edges.size()) { return std::vector<int>(); } return order; }
#line 2 "graph/euler_graph.hpp" #include <algorithm> #include <tuple> #include <utility> #include <vector> #line 2 "utils/macros.hpp" #define REP(i, n) for (int i = 0; (i) < (int)(n); ++ (i)) #define REP3(i, m, n) for (int i = (m); (i) < (int)(n); ++ (i)) #define REP_R(i, n) for (int i = (int)(n) - 1; (i) >= 0; -- (i)) #define REP3R(i, m, n) for (int i = (int)(n) - 1; (i) >= (int)(m); -- (i)) #define ALL(x) std::begin(x), std::end(x) #line 7 "graph/euler_graph.hpp" /** * @param g must be an undirected graph. Loops and multiple edges are acceptable. * @param root specifies the component to find an Eulerian cycle * @return indices of edges. It's empty if g is not a Eulerian graph. */ std::vector<int> find_eulerian_cycle_with_root(int n, const std::vector<std::pair<int, int> > & edges, int root) { int m = edges.size(); std::vector<std::vector<int> > g(n); std::vector<int> degree(n); REP (i, m) { int x, y; std::tie(x, y) = edges[i]; g[x].push_back(i); g[y].push_back(i); ++ degree[x]; ++ degree[y]; // This is required even if x == y } std::vector<int> order; std::vector<bool> used(m); auto go = [&](auto && go, int x) -> bool { if (degree[x] % 2 != 0) { return false; } while (not g[x].empty()) { int i = g[x].back(); g[x].pop_back(); if (not used[i]) { used[i] = true; int y = x ^ edges[i].first ^ edges[i].second; if (not go(go, y)) { return false; } order.push_back(i); } } return true; }; if (not go(go, root)) { return std::vector<int>(); // not a Eulerian graph } return order; } /** * @brief Eulerian cycle (無向, 復元) * @param g must be an undirected and connected graph. * @return indices of edges. It's empty if g is not a Eulerian graph. */ std::vector<int> find_eulerian_cycle(int n, const std::vector<std::pair<int, int> > & edges) { auto order = find_eulerian_cycle_with_root(n, edges, 0); if (order.size() != edges.size()) { return std::vector<int>(); } return order; }