This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub kmyk/competitive-programming-library
#define PROBLEM "https://judge.yosupo.jp/problem/range_kth_smallest" #include "../data_structure/wavelet_matrix.hpp" #include "../utils/macros.hpp" #include "../hack/fastio.hpp" #include <cstdint> using namespace std; int main() { // input int n = in<int>(); int q = in<int>(); vector<int32_t> a(n); REP (i, n) { a[i] = in<int32_t>(); } // construct wavelet_matrix<30> wm(a); // output while (q --) { int l = in<int>(); int r = in<int>(); int k = in<int>(); int32_t b = wm.quantile(k, l, r); out<int32_t>(b); out<char>('\n'); } return 0; }
#line 1 "data_structure/wavelet_matrix.range_kth_smallest.test.cpp" #define PROBLEM "https://judge.yosupo.jp/problem/range_kth_smallest" #line 2 "data_structure/wavelet_matrix.hpp" #include <array> #include <cassert> #include <climits> #include <cstdint> #include <vector> #line 2 "data_structure/fully_indexable_dictionary.hpp" #include <algorithm> #line 2 "utils/macros.hpp" #define REP(i, n) for (int i = 0; (i) < (int)(n); ++ (i)) #define REP3(i, m, n) for (int i = (m); (i) < (int)(n); ++ (i)) #define REP_R(i, n) for (int i = (int)(n) - 1; (i) >= 0; -- (i)) #define REP3R(i, m, n) for (int i = (int)(n) - 1; (i) >= (int)(m); -- (i)) #define ALL(x) std::begin(x), std::end(x) #line 7 "data_structure/fully_indexable_dictionary.hpp" /** * @brief Fully Indexable Dictionary / 完備辞書 * @docs data_structure/fully_indexable_dictionary.md * @note space complexity $o(N)$. $1.5N$-bit consumed */ class fully_indexable_dictionary { static constexpr std::size_t block_size = 64; std::vector<uint64_t> block; std::vector<int32_t> rank_block; // a blocked cumulative sum public: std::size_t size; fully_indexable_dictionary() = default; template <typename T> fully_indexable_dictionary(const std::vector<T> & bits) { size = bits.size(); std::size_t block_count = size / block_size + 1; block.resize(block_count); REP (i, size) if (bits[i]) { block[i / block_size] |= (1ull << (i % block_size)); } rank_block.resize(block_count); rank_block[0] = 0; REP (i, block_count - 1) { rank_block[i + 1] = rank_block[i] + __builtin_popcountll(block[i]); } } /** * @brief count the number of value in $[0, r)$ * @note $O(1)$ */ int rank(bool value, int r) const { assert (0 <= r and r <= size); uint64_t mask = (1ull << (r % block_size)) - 1; int rank_1 = rank_block[r / block_size] + __builtin_popcountll(block[r /block_size] & mask); return value ? rank_1 : r - rank_1; } int rank(bool value, int l, int r) const { assert (0 <= l and l <= r and r <= size); return rank(value, r) - rank(value, l); } /** * @brief find the index of the $k$-th occurrence of value * @note if there is no such index, returns size * @note $O(\log N)$ */ int select(bool value, int k) const { if (k >= rank(value, size)) return size; // binary search: max { i | rank_block[i] <= k } int l = 0, r = block.size(); // [l, r) while (r - l > 1) { int m = (l + r) / 2; int rank_block_m = (value ? rank_block[m] : m * block_size - rank_block[m]); (rank_block_m <= k ? l : r) = m; } int block_index = l; // binary search: max { i | rank(i) <= k } l = block_index * block_size; r = std::min<int>(size, (block_index + 1) * block_size); // [l, r) while (r - l > 1) { int m = (l + r) / 2; (rank(value, m) <= k ? l : r) = m; } return l; } /** * @brief select(value, k) in [l, size) */ int select(bool value, int k, int l) const { assert (0 <= l and l <= size); return select(value, k + rank(value, l)); } /** * @brief get the $i$-th element * @note $O(1)$ */ bool access(int i) const { assert (0 <= i and i < size); return block[i / block_size] & (1ull << (i % block_size)); } }; #line 9 "data_structure/wavelet_matrix.hpp" /** * @brief Wavelet Matrix * @docs data_structure/wavelet_matrix.md * @tparam BITS express the range [0, 2^BITS) of values. You can assume BITS \le \log N, using coordinate compression * @see https://www.slideshare.net/pfi/ss-15916040 */ template <int BITS> struct wavelet_matrix { static_assert (BITS < CHAR_BIT * sizeof(uint64_t), ""); std::array<fully_indexable_dictionary, BITS> fid; std::array<int, BITS> zero_count; wavelet_matrix() = default; /** * @note O(N BITS) */ template <typename T> wavelet_matrix(std::vector<T> data) { int size = data.size(); REP (i, size) { assert (0 <= data[i] and data[i] < (1ull << BITS)); } // bit-inversed radix sort std::vector<char> bits(size); std::vector<T> next(size); REP_R (k, BITS) { auto low = next.begin(); auto high = next.rbegin(); REP (i, size) { bits[i] = bool(data[i] & (1ull << k)); (bits[i] ? *(high ++) : *(low ++)) = data[i]; } fid[k] = fully_indexable_dictionary(bits); zero_count[k] = low - next.begin(); reverse(next.rbegin(), high); data.swap(next); } } /** * @brief count the occurrences of value in [l, r) * @note O(BITS) * @note even if l = 0, of course the final [l, r) is not always [0, r) */ int rank(uint64_t value, int l, int r) const { assert (0 <= value and value < (1ull << BITS)); assert (0 <= l and l <= r and r <= fid[0].size); REP_R (k, BITS) { bool p = value & (1ull << k); l = fid[k].rank(p, l) + p * zero_count[k]; r = fid[k].rank(p, r) + p * zero_count[k]; } return r - l; } int rank(uint64_t value, int r) const { return rank(value, 0, r); } /** * @brief find the index of the k-th occurence of value * @note O(BITS SELECT) when FID's select() is O(SELECT) */ int select(uint64_t value, int k) const { assert (0 <= value and value < (1ull << BITS)); assert (0 <= k); // do rank(value, 0, size) with logging std::vector<int> l(BITS + 1), r(BITS + 1); l[BITS] = 0; r[BITS] = fid[0].size; REP_R (d, BITS) { bool p = value & (1ull << d); l[d] = fid[d].rank(p, l[d + 1]) + p * zero_count[d]; r[d] = fid[d].rank(p, r[d + 1]) + p * zero_count[d]; } if (r[0] - l[0] <= k) return fid[0].size; // trace the log inversely REP (d, BITS) { bool p = value & (1ull << d); k = fid[d].select(p, k, l[d + 1]) - l[d + 1]; } return k; } /** * @brief find the index of the k-th occurence of value in [l, n) */ int select(uint64_t value, int k, int l) const { return select(value, k + rank(value, l)); } /** * @brief returns the i-th element * @note O(BITS) */ uint64_t access(int i) const { assert (0 <= i and i < fid[0].size); uint64_t acc = 0; REP_R (k, BITS) { bool p = fid[k].access(i); acc |= uint64_t(p) << k; i = fid[k].rank(p, i) + p * zero_count[k]; } return acc; } /** * @brief find the k-th number in [l, r) * @note O(BITS) */ uint64_t quantile(int k, int l, int r) { assert (0 <= k); assert (0 <= l and l <= r and r <= fid[0].size); if (r - l <= k) return 1ull << BITS; uint64_t acc = 0; REP_R (d, BITS) { int lc = fid[d].rank(1, l); int rc = fid[d].rank(1, r); int zero = (r - l) - (rc - lc); bool p = (k >= zero); if (p) { acc |= 1ull << d; l = lc + zero_count[d]; r = rc + zero_count[d]; k -= zero; } else { l -= lc; r -= rc; } } return acc; } /** * @brief count the number of values in [value_l, value_r) in range [l, r) * @note O(BITS) */ int range_frequency(int l, int r, uint64_t value_l, uint64_t value_r) const { assert (0 <= l and l <= r and r <= fid[0].size); assert (0 <= value_l and value_l <= value_r and value_r <= (1ull << BITS)); return range_frequency(BITS - 1, l, r, 0, value_l, value_r); } int range_frequency(int k, int l, int r, uint64_t v, uint64_t a, uint64_t b) const { if (l == r) return 0; if (k == -1) return (a <= v and v < b) ? r - l : 0; uint64_t nv = v | (1ull << k); uint64_t nnv = nv | ((1ull << k) - 1); if (nnv < a or b <= v) return 0; if (a <= v and nnv < b) return r - l; int lc = fid[k].rank(1, l); int rc = fid[k].rank(1, r); return range_frequency(k - 1, l - lc, r - rc, v, a, b) + range_frequency(k - 1, lc + zero_count[k], rc + zero_count[k], nv, a, b); } /** * @brief flexible version of range_frequency, buf a little bit slow * @note O(K BITS), K is the number of kinds of values in the range * @arg void callback(uint64_t value, int count) */ template <typename Func> void range_frequency_callback(int l, int r, uint64_t value_l, uint64_t value_r, Func callback) const { assert (0 <= l and l <= r and r <= fid[0].size); assert (0 <= value_l and value_l <= value_r and value_r <= (1ull << BITS)); range_frequency_callback(BITS - 1, l, r, 0, value_l, value_r, callback); } template <typename Func> void range_frequency_callback(int k, int l, int r, uint64_t v, uint64_t a, uint64_t b, Func callback) const { if (l == r) return; if (b <= v) return; if (k == -1) { if (a <= v) callback(v, r - l); return; } uint64_t nv = v | (1ull << k); uint64_t nnv = nv | (((1ull << k) - 1)); if (nnv < a) return; int lc = fid[k].rank(1, l); int rc = fid[k].rank(1, r); range_frequency_callback(k - 1, l - lc, r - rc, v, a, b, callback); range_frequency_callback(k - 1, lc + zero_count[k], rc + zero_count[k], nv, a, b, callback); } }; #line 3 "hack/fastio.hpp" #include <cstdio> #include <string> #include <type_traits> template <class Char, std::enable_if_t<std::is_same_v<Char, char>, int> = 0> inline Char in() { return getchar_unlocked(); } template <class String, std::enable_if_t<std::is_same_v<String, std::string>, int> = 0> inline std::string in() { char c; do { c = getchar_unlocked(); } while (isspace(c)); std::string s; do { s.push_back(c); } while (not isspace(c = getchar_unlocked())); return s; } template <class Integer, std::enable_if_t<std::is_integral_v<Integer> and not std::is_same_v<Integer, char>, int> = 0> inline Integer in() { char c; do { c = getchar_unlocked(); } while (isspace(c)); if (std::is_signed<Integer>::value and c == '-') return -in<Integer>(); Integer n = 0; do { n = n * 10 + c - '0'; } while (not isspace(c = getchar_unlocked())); return n; } template <class Char, std::enable_if_t<std::is_same_v<Char, char>, int> = 0> inline void out(char c) { putchar_unlocked(c); } template <class String, std::enable_if_t<std::is_same_v<String, std::string>, int> = 0> inline void out(const std::string & s) { for (char c : s) putchar_unlocked(c); } template <class Integer, std::enable_if_t<std::is_integral_v<Integer>, int> = 0> inline void out(Integer n) { char s[20]; int i = 0; if (std::is_signed<Integer>::value and n < 0) { putchar_unlocked('-'); n *= -1; } do { s[i ++] = n % 10; n /= 10; } while (n); while (i) putchar_unlocked(s[-- i] + '0'); } #line 6 "data_structure/wavelet_matrix.range_kth_smallest.test.cpp" using namespace std; int main() { // input int n = in<int>(); int q = in<int>(); vector<int32_t> a(n); REP (i, n) { a[i] = in<int32_t>(); } // construct wavelet_matrix<30> wm(a); // output while (q --) { int l = in<int>(); int r = in<int>(); int k = in<int>(); int32_t b = wm.quantile(k, l, r); out<int32_t>(b); out<char>('\n'); } return 0; }