This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub kmyk/competitive-programming-library
#define PROBLEM "https://judge.yosupo.jp/problem/queue_operate_all_composite" #include "../data_structure/sliding_window_aggregation.hpp" #include "../monoids/linear_function.hpp" #include "../monoids/dual.hpp" #include "../modulus/mint.hpp" #include <cstdio> #include <tuple> using namespace std; constexpr int MOD = 998244353; int main() { int q; scanf("%d", &q); sliding_window_aggregation<dual_monoid<linear_function_monoid<mint<MOD> > > > swag; while (q --) { int t; scanf("%d", &t); if (t == 0) { int a, b; scanf("%d%d", &a, &b); swag.push(make_pair(a, b)); } else if (t == 1) { swag.pop(); } else if (t == 2) { int x; scanf("%d", &x); mint<MOD> a, b; tie(a, b) = swag.accumulate(); printf("%d\n", (a * x + b).value); } } return 0; }
#line 1 "data_structure/sliding_window_aggregation.yosupo.test.cpp" #define PROBLEM "https://judge.yosupo.jp/problem/queue_operate_all_composite" #line 2 "data_structure/sliding_window_aggregation.hpp" #include <cassert> #include <cstddef> #include <deque> #line 2 "utils/macros.hpp" #define REP(i, n) for (int i = 0; (i) < (int)(n); ++ (i)) #define REP3(i, m, n) for (int i = (m); (i) < (int)(n); ++ (i)) #define REP_R(i, n) for (int i = (int)(n) - 1; (i) >= 0; -- (i)) #define REP3R(i, m, n) for (int i = (int)(n) - 1; (i) >= (int)(m); -- (i)) #define ALL(x) std::begin(x), std::end(x) #line 6 "data_structure/sliding_window_aggregation.hpp" /** * @brief Sliding Window Aggregation / 含まれる要素の総和が $O(1)$ で取れる queue (可換とは限らない monoid が乗る) */ template <class Monoid> struct sliding_window_aggregation { typedef typename Monoid::value_type value_type; Monoid mon; std::deque<value_type> data; int front; value_type back; sliding_window_aggregation(const Monoid & mon_ = Monoid()) : mon(mon_) { front = 0; back = mon.unit(); } /** * @note O(1) */ void push(value_type x) { data.push_back(x); back = mon.mult(back, x); } /** * @note amortized O(1) */ void pop() { assert (not data.empty()); data.pop_front(); if (front) { -- front; } else { REP_R (i, (int)data.size() - 1) { data[i] = mon.mult(data[i], data[i + 1]); } front = data.size(); back = mon.unit(); } } /** * @brief get sum of elements in the queue * @note O(1) */ value_type accumulate() const { return front ? mon.mult(data.front(), back) : back; } bool empty() const { return data.empty(); } std::size_t size() const { return data.size(); } }; #line 2 "monoids/linear_function.hpp" #include <utility> template <class CommutativeRing> struct linear_function_monoid { typedef std::pair<CommutativeRing, CommutativeRing> value_type; linear_function_monoid() = default; value_type unit() const { return std::make_pair(1, 0); } value_type mult(value_type g, value_type f) const { CommutativeRing fst = g.first * f.first; CommutativeRing snd = g.second + g.first * f.second; return std::make_pair(fst, snd); } }; #line 2 "monoids/dual.hpp" /** * @see http://hackage.haskell.org/package/base/docs/Data-Monoid.html#t:Dual */ template <class Monoid> struct dual_monoid { typedef typename Monoid::value_type value_type; Monoid base; value_type unit() const { return base.unit(); } value_type mult(const value_type & a, const value_type & b) const { return base.mult(b, a); } }; #line 2 "modulus/mint.hpp" #include <cstdint> #include <iostream> #line 4 "modulus/modpow.hpp" inline int32_t modpow(uint_fast64_t x, uint64_t k, int32_t MOD) { assert (/* 0 <= x and */ x < (uint_fast64_t)MOD); uint_fast64_t y = 1; for (; k; k >>= 1) { if (k & 1) (y *= x) %= MOD; (x *= x) %= MOD; } assert (/* 0 <= y and */ y < (uint_fast64_t)MOD); return y; } #line 2 "modulus/modinv.hpp" #include <algorithm> #line 5 "modulus/modinv.hpp" inline int32_t modinv_nocheck(int32_t value, int32_t MOD) { assert (0 <= value and value < MOD); if (value == 0) return -1; int64_t a = value, b = MOD; int64_t x = 0, y = 1; for (int64_t u = 1, v = 0; a; ) { int64_t q = b / a; x -= q * u; std::swap(x, u); y -= q * v; std::swap(y, v); b -= q * a; std::swap(b, a); } if (not (value * x + MOD * y == b and b == 1)) return -1; if (x < 0) x += MOD; assert (0 <= x and x < MOD); return x; } inline int32_t modinv(int32_t x, int32_t MOD) { int32_t y = modinv_nocheck(x, MOD); assert (y != -1); return y; } #line 6 "modulus/mint.hpp" /** * @brief quotient ring / 剰余環 $\mathbb{Z}/n\mathbb{Z}$ */ template <int32_t MOD> struct mint { int32_t value; mint() : value() {} mint(int64_t value_) : value(value_ < 0 ? value_ % MOD + MOD : value_ >= MOD ? value_ % MOD : value_) {} mint(int32_t value_, std::nullptr_t) : value(value_) {} explicit operator bool() const { return value; } inline mint<MOD> operator + (mint<MOD> other) const { return mint<MOD>(*this) += other; } inline mint<MOD> operator - (mint<MOD> other) const { return mint<MOD>(*this) -= other; } inline mint<MOD> operator * (mint<MOD> other) const { return mint<MOD>(*this) *= other; } inline mint<MOD> & operator += (mint<MOD> other) { this->value += other.value; if (this->value >= MOD) this->value -= MOD; return *this; } inline mint<MOD> & operator -= (mint<MOD> other) { this->value -= other.value; if (this->value < 0) this->value += MOD; return *this; } inline mint<MOD> & operator *= (mint<MOD> other) { this->value = (uint_fast64_t)this->value * other.value % MOD; return *this; } inline mint<MOD> operator - () const { return mint<MOD>(this->value ? MOD - this->value : 0, nullptr); } inline bool operator == (mint<MOD> other) const { return value == other.value; } inline bool operator != (mint<MOD> other) const { return value != other.value; } inline mint<MOD> pow(uint64_t k) const { return mint<MOD>(modpow(value, k, MOD), nullptr); } inline mint<MOD> inv() const { return mint<MOD>(modinv(value, MOD), nullptr); } inline mint<MOD> operator / (mint<MOD> other) const { return *this * other.inv(); } inline mint<MOD> & operator /= (mint<MOD> other) { return *this *= other.inv(); } }; template <int32_t MOD> mint<MOD> operator + (int64_t value, mint<MOD> n) { return mint<MOD>(value) + n; } template <int32_t MOD> mint<MOD> operator - (int64_t value, mint<MOD> n) { return mint<MOD>(value) - n; } template <int32_t MOD> mint<MOD> operator * (int64_t value, mint<MOD> n) { return mint<MOD>(value) * n; } template <int32_t MOD> mint<MOD> operator / (int64_t value, mint<MOD> n) { return mint<MOD>(value) / n; } template <int32_t MOD> std::istream & operator >> (std::istream & in, mint<MOD> & n) { int64_t value; in >> value; n = value; return in; } template <int32_t MOD> std::ostream & operator << (std::ostream & out, mint<MOD> n) { return out << n.value; } #line 6 "data_structure/sliding_window_aggregation.yosupo.test.cpp" #include <cstdio> #include <tuple> using namespace std; constexpr int MOD = 998244353; int main() { int q; scanf("%d", &q); sliding_window_aggregation<dual_monoid<linear_function_monoid<mint<MOD> > > > swag; while (q --) { int t; scanf("%d", &t); if (t == 0) { int a, b; scanf("%d%d", &a, &b); swag.push(make_pair(a, b)); } else if (t == 1) { swag.pop(); } else if (t == 2) { int x; scanf("%d", &x); mint<MOD> a, b; tie(a, b) = swag.accumulate(); printf("%d\n", (a * x + b).value); } } return 0; }