This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub kmyk/competitive-programming-library
#include "data_structure/sliding_window_aggregation.hpp"
#pragma once #include <cassert> #include <cstddef> #include <deque> #include "../utils/macros.hpp" /** * @brief Sliding Window Aggregation / 含まれる要素の総和が $O(1)$ で取れる queue (可換とは限らない monoid が乗る) */ template <class Monoid> struct sliding_window_aggregation { typedef typename Monoid::value_type value_type; Monoid mon; std::deque<value_type> data; int front; value_type back; sliding_window_aggregation(const Monoid & mon_ = Monoid()) : mon(mon_) { front = 0; back = mon.unit(); } /** * @note O(1) */ void push(value_type x) { data.push_back(x); back = mon.mult(back, x); } /** * @note amortized O(1) */ void pop() { assert (not data.empty()); data.pop_front(); if (front) { -- front; } else { REP_R (i, (int)data.size() - 1) { data[i] = mon.mult(data[i], data[i + 1]); } front = data.size(); back = mon.unit(); } } /** * @brief get sum of elements in the queue * @note O(1) */ value_type accumulate() const { return front ? mon.mult(data.front(), back) : back; } bool empty() const { return data.empty(); } std::size_t size() const { return data.size(); } };
#line 2 "data_structure/sliding_window_aggregation.hpp" #include <cassert> #include <cstddef> #include <deque> #line 2 "utils/macros.hpp" #define REP(i, n) for (int i = 0; (i) < (int)(n); ++ (i)) #define REP3(i, m, n) for (int i = (m); (i) < (int)(n); ++ (i)) #define REP_R(i, n) for (int i = (int)(n) - 1; (i) >= 0; -- (i)) #define REP3R(i, m, n) for (int i = (int)(n) - 1; (i) >= (int)(m); -- (i)) #define ALL(x) std::begin(x), std::end(x) #line 6 "data_structure/sliding_window_aggregation.hpp" /** * @brief Sliding Window Aggregation / 含まれる要素の総和が $O(1)$ で取れる queue (可換とは限らない monoid が乗る) */ template <class Monoid> struct sliding_window_aggregation { typedef typename Monoid::value_type value_type; Monoid mon; std::deque<value_type> data; int front; value_type back; sliding_window_aggregation(const Monoid & mon_ = Monoid()) : mon(mon_) { front = 0; back = mon.unit(); } /** * @note O(1) */ void push(value_type x) { data.push_back(x); back = mon.mult(back, x); } /** * @note amortized O(1) */ void pop() { assert (not data.empty()); data.pop_front(); if (front) { -- front; } else { REP_R (i, (int)data.size() - 1) { data[i] = mon.mult(data[i], data[i + 1]); } front = data.size(); back = mon.unit(); } } /** * @brief get sum of elements in the queue * @note O(1) */ value_type accumulate() const { return front ? mon.mult(data.front(), back) : back; } bool empty() const { return data.empty(); } std::size_t size() const { return data.size(); } };