This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub kmyk/competitive-programming-library
#define PROBLEM "https://judge.yosupo.jp/problem/point_set_range_composite" #include "../data_structure/segment_tree.hpp" #include "../monoids/linear_function.hpp" #include "../monoids/dual.hpp" #include "../modulus/mint.hpp" #include "../utils/macros.hpp" #include <cstdint> #include <tuple> using namespace std; constexpr int MOD = 998244353; int main() { int n, q; scanf("%d%d", &n, &q); segment_tree<dual_monoid<linear_function_monoid<mint<MOD> > > > segtree(n); REP (i, n) { int a, b; scanf("%d%d", &a, &b); segtree.point_set(i, make_pair(a, b)); } while (q --) { int f, x, y, z; scanf("%d%d%d%d", &f, &x, &y, &z); if (f == 0) { segtree.point_set(x, make_pair(y, z)); } else if (f == 1) { mint<MOD> a, b; tie(a, b) = segtree.range_get(x, y); printf("%d\n", (a * z + b).value); } } return 0; }
#line 1 "data_structure/segment_tree.point_set_range_composite.test.cpp" #define PROBLEM "https://judge.yosupo.jp/problem/point_set_range_composite" #line 2 "data_structure/segment_tree.hpp" #include <algorithm> #include <cassert> #include <vector> #line 2 "utils/macros.hpp" #define REP(i, n) for (int i = 0; (i) < (int)(n); ++ (i)) #define REP3(i, m, n) for (int i = (m); (i) < (int)(n); ++ (i)) #define REP_R(i, n) for (int i = (int)(n) - 1; (i) >= 0; -- (i)) #define REP3R(i, m, n) for (int i = (int)(n) - 1; (i) >= (int)(m); -- (i)) #define ALL(x) std::begin(x), std::end(x) #line 6 "data_structure/segment_tree.hpp" /** * @brief Segment Tree / セグメント木 (monoids, 完全二分木) * @docs data_structure/segment_tree.md * @tparam Monoid (commutativity is not required) */ template <class Monoid> struct segment_tree { typedef typename Monoid::value_type value_type; Monoid mon; int n; std::vector<value_type> a; segment_tree() = default; segment_tree(int n_, const Monoid & mon_ = Monoid()) : mon(mon_) { n = 1; while (n < n_) n *= 2; a.resize(2 * n - 1, mon.unit()); } void point_set(int i, value_type b) { // 0-based assert (0 <= i and i < n); a[i + n - 1] = b; for (i = (i + n) / 2; i > 0; i /= 2) { // 1-based a[i - 1] = mon.mult(a[2 * i - 1], a[2 * i]); } } value_type range_get(int l, int r) { // 0-based, [l, r) assert (0 <= l and l <= r and r <= n); value_type lacc = mon.unit(), racc = mon.unit(); for (l += n, r += n; l < r; l /= 2, r /= 2) { // 1-based loop, 2x faster than recursion if (l % 2 == 1) lacc = mon.mult(lacc, a[(l ++) - 1]); if (r % 2 == 1) racc = mon.mult(a[(-- r) - 1], racc); } return mon.mult(lacc, racc); } value_type point_get(int i) { // 0-based assert (0 <= i and i < n); return a[i + n - 1]; } /** * @note O(min(n, (r - l) log n)) */ void range_set(int l, int r, value_type b) { assert (0 <= l and l <= r and r <= n); range_set(0, 0, n, l, r, b); } void range_set(int i, int il, int ir, int l, int r, value_type b) { if (l <= il and ir <= r and ir - il == 1) { // 0-based a[i] = b; } else if (ir <= l or r <= il) { // nop } else { range_set(2 * i + 1, il, (il + ir) / 2, l, r, b); range_set(2 * i + 2, (il + ir) / 2, ir, l, r, b); a[i] = mon.mult(a[2 * i + 1], a[2 * i + 2]); } } /** * @brief a fast & semigroup-friendly version constructor * @note $O(n)$ */ template <class InputIterator> segment_tree(InputIterator first, InputIterator last, const Monoid & mon_ = Monoid()) : mon(mon_) { int size = std::distance(first, last); n = 1; while (n < size) n *= 2; a.resize(2 * n - 1, mon.unit()); std::copy(first, last, a.begin() + (n - 1)); unsafe_rebuild(); } /** * @brief update a leaf node without updating ancestors * @note $O(1)$ */ void unsafe_point_set(int i, value_type b) { // 0-based assert (0 <= i and i < n); a[i + n - 1] = b; } /** * @brief re-build non-leaf nodes from leaf nodes * @note $O(n)$ */ void unsafe_rebuild() { REP_R (i, n - 1) { a[i] = mon.mult(a[2 * i + 1], a[2 * i + 2]); } } }; #line 2 "monoids/linear_function.hpp" #include <utility> template <class CommutativeRing> struct linear_function_monoid { typedef std::pair<CommutativeRing, CommutativeRing> value_type; linear_function_monoid() = default; value_type unit() const { return std::make_pair(1, 0); } value_type mult(value_type g, value_type f) const { CommutativeRing fst = g.first * f.first; CommutativeRing snd = g.second + g.first * f.second; return std::make_pair(fst, snd); } }; #line 2 "monoids/dual.hpp" /** * @see http://hackage.haskell.org/package/base/docs/Data-Monoid.html#t:Dual */ template <class Monoid> struct dual_monoid { typedef typename Monoid::value_type value_type; Monoid base; value_type unit() const { return base.unit(); } value_type mult(const value_type & a, const value_type & b) const { return base.mult(b, a); } }; #line 2 "modulus/mint.hpp" #include <cstdint> #include <iostream> #line 4 "modulus/modpow.hpp" inline int32_t modpow(uint_fast64_t x, uint64_t k, int32_t MOD) { assert (/* 0 <= x and */ x < (uint_fast64_t)MOD); uint_fast64_t y = 1; for (; k; k >>= 1) { if (k & 1) (y *= x) %= MOD; (x *= x) %= MOD; } assert (/* 0 <= y and */ y < (uint_fast64_t)MOD); return y; } #line 5 "modulus/modinv.hpp" inline int32_t modinv_nocheck(int32_t value, int32_t MOD) { assert (0 <= value and value < MOD); if (value == 0) return -1; int64_t a = value, b = MOD; int64_t x = 0, y = 1; for (int64_t u = 1, v = 0; a; ) { int64_t q = b / a; x -= q * u; std::swap(x, u); y -= q * v; std::swap(y, v); b -= q * a; std::swap(b, a); } if (not (value * x + MOD * y == b and b == 1)) return -1; if (x < 0) x += MOD; assert (0 <= x and x < MOD); return x; } inline int32_t modinv(int32_t x, int32_t MOD) { int32_t y = modinv_nocheck(x, MOD); assert (y != -1); return y; } #line 6 "modulus/mint.hpp" /** * @brief quotient ring / 剰余環 $\mathbb{Z}/n\mathbb{Z}$ */ template <int32_t MOD> struct mint { int32_t value; mint() : value() {} mint(int64_t value_) : value(value_ < 0 ? value_ % MOD + MOD : value_ >= MOD ? value_ % MOD : value_) {} mint(int32_t value_, std::nullptr_t) : value(value_) {} explicit operator bool() const { return value; } inline mint<MOD> operator + (mint<MOD> other) const { return mint<MOD>(*this) += other; } inline mint<MOD> operator - (mint<MOD> other) const { return mint<MOD>(*this) -= other; } inline mint<MOD> operator * (mint<MOD> other) const { return mint<MOD>(*this) *= other; } inline mint<MOD> & operator += (mint<MOD> other) { this->value += other.value; if (this->value >= MOD) this->value -= MOD; return *this; } inline mint<MOD> & operator -= (mint<MOD> other) { this->value -= other.value; if (this->value < 0) this->value += MOD; return *this; } inline mint<MOD> & operator *= (mint<MOD> other) { this->value = (uint_fast64_t)this->value * other.value % MOD; return *this; } inline mint<MOD> operator - () const { return mint<MOD>(this->value ? MOD - this->value : 0, nullptr); } inline bool operator == (mint<MOD> other) const { return value == other.value; } inline bool operator != (mint<MOD> other) const { return value != other.value; } inline mint<MOD> pow(uint64_t k) const { return mint<MOD>(modpow(value, k, MOD), nullptr); } inline mint<MOD> inv() const { return mint<MOD>(modinv(value, MOD), nullptr); } inline mint<MOD> operator / (mint<MOD> other) const { return *this * other.inv(); } inline mint<MOD> & operator /= (mint<MOD> other) { return *this *= other.inv(); } }; template <int32_t MOD> mint<MOD> operator + (int64_t value, mint<MOD> n) { return mint<MOD>(value) + n; } template <int32_t MOD> mint<MOD> operator - (int64_t value, mint<MOD> n) { return mint<MOD>(value) - n; } template <int32_t MOD> mint<MOD> operator * (int64_t value, mint<MOD> n) { return mint<MOD>(value) * n; } template <int32_t MOD> mint<MOD> operator / (int64_t value, mint<MOD> n) { return mint<MOD>(value) / n; } template <int32_t MOD> std::istream & operator >> (std::istream & in, mint<MOD> & n) { int64_t value; in >> value; n = value; return in; } template <int32_t MOD> std::ostream & operator << (std::ostream & out, mint<MOD> n) { return out << n.value; } #line 8 "data_structure/segment_tree.point_set_range_composite.test.cpp" #include <tuple> using namespace std; constexpr int MOD = 998244353; int main() { int n, q; scanf("%d%d", &n, &q); segment_tree<dual_monoid<linear_function_monoid<mint<MOD> > > > segtree(n); REP (i, n) { int a, b; scanf("%d%d", &a, &b); segtree.point_set(i, make_pair(a, b)); } while (q --) { int f, x, y, z; scanf("%d%d%d%d", &f, &x, &y, &z); if (f == 0) { segtree.point_set(x, make_pair(y, z)); } else if (f == 1) { mint<MOD> a, b; tie(a, b) = segtree.range_get(x, y); printf("%d\n", (a * z + b).value); } } return 0; }