This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub kmyk/competitive-programming-library
#define PROBLEM "http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=2170&lang=jp" #include <iostream> #include "../data_structure/link_cut_tree.hpp" #include "../monoids/trivial.hpp" #include "../utils/macros.hpp" using namespace std; int main() { while (true) { int n, q; cin >> n >> q; if (n == 0 and q == 0) break; link_cut_tree<trivial_monoid> lct(n); REP3 (i, 1, n) { int parent; cin >> parent; -- parent; lct.link(i, parent); } long long sum = 0; vector<bool> marked(n); marked[0] = true; while (q --) { char c; int v; cin >> c >> v; -- v; if (c == 'M') { if (not marked[v]) { marked[v] = true; lct.cut(v); } } else if (c == 'Q') { sum += lct.get_root(v) + 1; } } cout << sum << endl; } return 0; }
#line 1 "data_structure/link_cut_tree.marked_ancestor.test.cpp" #define PROBLEM "http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=2170&lang=jp" #include <iostream> #line 2 "data_structure/link_cut_tree.hpp" #include <algorithm> #include <cassert> #include <functional> #include <sstream> #include <vector> #line 2 "utils/macros.hpp" #define REP(i, n) for (int i = 0; (i) < (int)(n); ++ (i)) #define REP3(i, m, n) for (int i = (m); (i) < (int)(n); ++ (i)) #define REP_R(i, n) for (int i = (int)(n) - 1; (i) >= 0; -- (i)) #define REP3R(i, m, n) for (int i = (int)(n) - 1; (i) >= (int)(m); -- (i)) #define ALL(x) std::begin(x), std::end(x) #line 2 "monoids/reversible.hpp" #include <utility> template <class Monoid> struct reversible_monoid { typedef typename Monoid::value_type base_type; typedef std::pair<base_type, base_type> value_type; Monoid base; reversible_monoid() = default; reversible_monoid(const Monoid & base_) : base(base_) {} value_type unit() const { return std::make_pair(base.unit(), base.unit()); } value_type mult(const value_type & a, const value_type & b) const { return std::make_pair(base.mult(a.first, b.first), base.mult(b.second, a.second)); } static value_type make(const base_type & x) { return std::make_pair(x, x); } static value_type reverse(const value_type & a) { return std::make_pair(a.second, a.first); } static base_type get(const value_type & a) { return a.first; } }; #line 9 "data_structure/link_cut_tree.hpp" /** * @brief Link-Cut tree (monoids without commutativity, vertex set + path get) * @docs data_structure/link_cut_tree.md * @description manages a dynamic forest of rooted trees * @note in each splay tree, nodes are sorted from bottom to top. the rightmost node of the root splay tree of the auxiliary tree is the root of represented tree. */ template <class Monoid> class link_cut_tree { typedef typename Monoid::value_type value_type; typedef typename reversible_monoid<Monoid>::value_type reversible_type; const reversible_monoid<Monoid> mon; std::vector<value_type> data; // data of the original tree std::vector<reversible_type> path; // sum of data of the sub-tree in the belonging splay tree std::vector<int> parent, left, right; // of the auxiliary tree std::vector<bool> is_reversed; // of the auxiliary tree; not applied to left, right, and path yet /** * @description returns whether `a` and `parent[a]` is in the same splay tree */ int get_parent_edge_type(int a) const { if (parent[a] != -1 and left[parent[a]] == a) { assert (not is_reversed[parent[a]]); return -1; // heavy (left-child) } else if (parent[a] != -1 and right[parent[a]] == a) { assert (not is_reversed[parent[a]]); return +1; // heavy (right-child) } else { return 0; // light } } /** * @description make `a` the parent of the current parent of `a` */ void rotate(int a) { int b = parent[a]; assert (b != -1); assert (not is_reversed[b]); assert (not is_reversed[a]); switch (get_parent_edge_type(b)) { case -1: // left left[parent[b]] = a; break; case 1: // right right[parent[b]] = a; break; } switch (get_parent_edge_type(a)) { case -1: // left parent[a] = std::exchange(parent[b], a); left[b] = std::exchange(right[a], b); if (left[b] != -1) parent[left[b]] = b; break; case 1: // right parent[a] = std::exchange(parent[b], a); right[b] = std::exchange(left[a], b); if (right[b] != -1) parent[right[b]] = b; break; default: // root assert (false); } update_path(b); update_path(a); } /** * @description make `a` the root of the beloging splay tree */ void splay(int a) { propagate_reverse_splay(a); while (get_parent_edge_type(a)) { // a is not the root of the splay tree if (not get_parent_edge_type(parent[a])) { // zig step: parent[a] is the root of the splay tree rotate(a); } else if (get_parent_edge_type(a) == get_parent_edge_type(parent[a])) { // zig-zig step rotate(parent[a]); rotate(a); } else { // zig-zag step rotate(a); rotate(a); } } } /** * @description make `a` the root of the auxiliary tree * @note `a` becomes a terminal of the heavy path */ void expose(int a) { // make a light path from `a` to the root for (int b = a; b != -1; b = parent[b]) { splay(b); } // make `a` the terminal of the path assert (not is_reversed[a]); left[a] = -1; update_path(a); // make the path heavy for (int b = a; parent[b] != -1; b = parent[b]) { left[parent[b]] = b; update_path(parent[b]); } splay(a); } void propagate_reverse_node(int a) { if (is_reversed[a]) { is_reversed[a] = false; path[a] = reversible_monoid<Monoid>::reverse(path[a]); if (right[a] != -1) is_reversed[right[a]] = not is_reversed[right[a]]; if (left[a] != -1) is_reversed[left[a]] = not is_reversed[left[a]]; std::swap(left[a], right[a]); } } void propagate_reverse_splay(int a) { if (parent[a] != -1 and (left[parent[a]] == a or right[parent[a]] == a)) { propagate_reverse_splay(parent[a]); } propagate_reverse_node(a); if (right[a] != -1) propagate_reverse_node(right[a]); if (left[a] != -1) propagate_reverse_node(left[a]); } /** * @note `a` should be the root of the splay tree */ void update_path(int a) { path[a] = reversible_monoid<Monoid>::make(data[a]); if (right[a] != -1) path[a] = mon.mult(path[a], path[right[a]]); if (left[a] != -1) path[a] = mon.mult(path[left[a]], path[a]); } public: link_cut_tree(int size, const Monoid & mon_ = Monoid()) : mon(mon_), data(size, mon.base.unit()), path(size, mon.unit()), parent(size, -1), left(size, -1), right(size, -1), is_reversed(size, false) { } /** * @description make a direct edge from `a` to `b` * @note `a` must be a root * @note `b` must not be a descendant of `a` */ void link(int a, int b) { expose(b); // for the time complexity expose(a); // to make `a` the root assert (not is_reversed[a]); assert (right[a] == -1); // `a` must be a root parent[a] = b; } /** * @description remove the direct edge from `a` * @note `a` must not be a root */ void cut(int a) { expose(a); // to make `a` the root assert (not is_reversed[a]); assert (right[a] != -1); // `a` must not be a root parent[right[a]] = -1; right[a] = -1; update_path(a); } /** * @note -1 is returned when `a` and `b` are not in the same tree */ int get_lowest_common_ancestor(int a, int b) { expose(b); // for the time complexity expose(a); // to make `a` the root assert (not is_reversed[a]); int preserved = -1; std::swap(left[a], preserved); // make `a` and `b` belong different splay trees even if `b` is a descendant of `a` int result = b; int c = b; for (; c != a and c != -1; c = parent[c]) { assert (parent[c] != -1); if (not get_parent_edge_type(c)) { // when it enters another splay tree result = parent[c]; } } std::swap(left[a], preserved); return c == a ? result : -1; } bool are_connected(int a, int b) { return get_lowest_common_ancestor(a, b) != -1; } int get_parent(int a) { expose(a); assert (not is_reversed[a]); if (right[a] == -1) return parent[a]; for (int b = right[a]; ; b = left[b]) { propagate_reverse_node(b); if (left[b] == -1) { splay(b); // for the time complexity return b; } } } int get_root(int a) { expose(a); assert (not is_reversed[a]); while (right[a] != -1) { a = right[a]; } splay(a); // for the time complexity return a; } /** * @description make `a` the root of the represented tree */ void evert(int a) { expose(a); // to make `a` the root assert (not is_reversed[a]); assert (left[a] == -1); // `a` is the terminal is_reversed[a] = true; } void vertex_set(int a, value_type value) { splay(a); // to make `a` the root of a splay tree data[a] = value; update_path(a); } value_type vertex_get(int a) const { return data[a]; } value_type path_get(int a, int b) { expose(a); // for the time complexity expose(b); // to make `b` the root assert (not is_reversed[a]); auto data_a = reversible_monoid<Monoid>::make(data[a]); reversible_type up = (right[a] == -1 ? data_a : mon.mult(data_a, path[right[a]])); reversible_type down = (left[a] == -1 ? data_a : mon.mult(path[left[a]], data_a)); for (int c = a; c != b and c != -1; c = parent[c]) { assert (parent[c] != -1); assert (not is_reversed[parent[c]]); auto data_parent_c = reversible_monoid<Monoid>::make(data[parent[c]]); switch (get_parent_edge_type(c)) { case -1: // heavy (left-child) up = mon.mult(up, data_parent_c); if (right[parent[c]] != -1) up = mon.mult(up, path[right[parent[c]]]); break; case 1: // heavy (right-child) down = mon.mult(data_parent_c, down); if (left[parent[c]] != -1) down = mon.mult(path[left[parent[c]]], down); break; case 0: // light down = reversible_monoid<Monoid>::reverse(up); up = mon.mult(up, data_parent_c); if (right[parent[c]] != -1) up = mon.mult(up, path[right[parent[c]]]); down = mon.mult(data_parent_c, down); if (left[parent[c]] != -1) down = mon.mult(path[left[parent[c]]], down); break; } } return reversible_monoid<Monoid>::get(reversible_monoid<Monoid>::reverse(down)); } std::string to_graphviz() const { using namespace std; ostringstream oss; oss << "digraph G {" << endl; oss << " graph [ rankdir = BT, bgcolor = \"#00000000\" ]" << endl; oss << " node [ shape = circle, style = filled, fillcolor = \"#ffffffff\" ]" << endl; REP (a, parent.size()) { // oss << " " << a << ";" << endl; oss << " " << a << "[ label = \"" << a << "(" << data[a] << "," << path[a] << (is_reversed[a] ? " +rev" : "") << ")\"];" << endl; } function <void (int)> go = [&](int a) { if (parent[a] != -1 and not get_parent_edge_type(a)) { oss << " " << a << " -> " << parent[a] << " [ style = dashed ]" << endl; } if (left[a] != -1 or right[a] != -1) { string l = (left[a] != -1 ? to_string(left[a]) : "l" + to_string(a)); string r = (right[a] != -1 ? to_string(right[a]) : "r" + to_string(a)); oss << " " << l << " -> " << a << endl; oss << " " << l << " -> " << r << " [ style = invis ]" << endl; oss << " " << r << " -> " << a << endl; oss << " { rank = same; " << l << "; " << r << "; }" << endl; if (left[a] == -1) oss << " " << l << " [ style = invis ]" << endl; if (right[a] == -1) oss << " " << r << " [ style = invis ]" << endl; } if (left[a] != -1) go(left[a]); if (right[a] != -1) go(right[a]); }; REP (a, parent.size()) if (not get_parent_edge_type(a)) { go(a); } oss << "}"; return oss.str(); } }; #line 2 "monoids/trivial.hpp" struct trivial_monoid { typedef struct {} value_type; value_type unit() const { return (value_type) {}; } value_type mult(value_type a, value_type b) const { return (value_type) {}; } }; #line 6 "data_structure/link_cut_tree.marked_ancestor.test.cpp" using namespace std; int main() { while (true) { int n, q; cin >> n >> q; if (n == 0 and q == 0) break; link_cut_tree<trivial_monoid> lct(n); REP3 (i, 1, n) { int parent; cin >> parent; -- parent; lct.link(i, parent); } long long sum = 0; vector<bool> marked(n); marked[0] = true; while (q --) { char c; int v; cin >> c >> v; -- v; if (c == 'M') { if (not marked[v]) { marked[v] = true; lct.cut(v); } } else if (c == 'Q') { sum += lct.get_root(v) + 1; } } cout << sum << endl; } return 0; }