This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub kmyk/competitive-programming-library
#define PROBLEM "https://judge.yosupo.jp/problem/dynamic_tree_vertex_set_path_composite"
#include "../data_structure/link_cut_tree.hpp"
#include "../modulus/mint.hpp"
#include "../monoids/linear_function.hpp"
#include "../monoids/dual.hpp"
#include "../utils/macros.hpp"
#include "../hack/fastio.hpp"
#include <stack>
#include <vector>
constexpr int MOD = 998244353;
int main() {
int n = in<int>();
int q = in<int>();
// initialize
link_cut_tree<dual_monoid<linear_function_monoid<mint<MOD> > > > lct(n);
REP (i, n) {
mint<MOD> a_i = in<int32_t>();
mint<MOD> b_i = in<int32_t>();
lct.vertex_set(i, std::make_pair(a_i, b_i));
}
std::vector<std::vector<int> > g(n);
REP (i, n - 1) {
int u = in<int>();
int v = in<int>();
g[u].push_back(v);
g[v].push_back(u);
}
std::vector<bool> used(n);
std::stack<int> stk;
stk.push(0);
used[0] = true;
while (not stk.empty()) {
int u = stk.top();
stk.pop();
for (int v : g[u]) if (not used[v]) {
lct.link(v, u);
stk.push(v);
used[v] = true;
}
}
// answer to queries
while (q --) {
int t = in<int>();
if (t == 0) {
int u = in<int>();
int v = in<int>();
int w = in<int>();
int x = in<int>();
lct.cut(lct.get_parent(u) == v ? u : v);
lct.evert(w);
lct.link(w, x);
} else if (t == 1) {
int u = in<int>();
mint<MOD> c = in<int32_t>();
mint<MOD> d = in<int32_t>();
lct.vertex_set(u, std::make_pair(c, d));
} else if (t == 2) {
int u = in<int>();
int v = in<int>();
mint<MOD> x = in<int32_t>();
auto [a, b] = lct.path_get(u, v);
out<int32_t>((a * x + b).value);
out<char>('\n');
}
}
return 0;
}
#line 1 "data_structure/link_cut_tree.dynamic_tree_vertex_set_path_composite.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/dynamic_tree_vertex_set_path_composite"
#line 2 "data_structure/link_cut_tree.hpp"
#include <algorithm>
#include <cassert>
#include <functional>
#include <sstream>
#include <vector>
#line 2 "utils/macros.hpp"
#define REP(i, n) for (int i = 0; (i) < (int)(n); ++ (i))
#define REP3(i, m, n) for (int i = (m); (i) < (int)(n); ++ (i))
#define REP_R(i, n) for (int i = (int)(n) - 1; (i) >= 0; -- (i))
#define REP3R(i, m, n) for (int i = (int)(n) - 1; (i) >= (int)(m); -- (i))
#define ALL(x) std::begin(x), std::end(x)
#line 2 "monoids/reversible.hpp"
#include <utility>
template <class Monoid>
struct reversible_monoid {
typedef typename Monoid::value_type base_type;
typedef std::pair<base_type, base_type> value_type;
Monoid base;
reversible_monoid() = default;
reversible_monoid(const Monoid & base_) : base(base_) {}
value_type unit() const { return std::make_pair(base.unit(), base.unit()); }
value_type mult(const value_type & a, const value_type & b) const { return std::make_pair(base.mult(a.first, b.first), base.mult(b.second, a.second)); }
static value_type make(const base_type & x) { return std::make_pair(x, x); }
static value_type reverse(const value_type & a) { return std::make_pair(a.second, a.first); }
static base_type get(const value_type & a) { return a.first; }
};
#line 9 "data_structure/link_cut_tree.hpp"
/**
* @brief Link-Cut tree (monoids without commutativity, vertex set + path get)
* @docs data_structure/link_cut_tree.md
* @description manages a dynamic forest of rooted trees
* @note in each splay tree, nodes are sorted from bottom to top. the rightmost node of the root splay tree of the auxiliary tree is the root of represented tree.
*/
template <class Monoid>
class link_cut_tree {
typedef typename Monoid::value_type value_type;
typedef typename reversible_monoid<Monoid>::value_type reversible_type;
const reversible_monoid<Monoid> mon;
std::vector<value_type> data; // data of the original tree
std::vector<reversible_type> path; // sum of data of the sub-tree in the belonging splay tree
std::vector<int> parent, left, right; // of the auxiliary tree
std::vector<bool> is_reversed; // of the auxiliary tree; not applied to left, right, and path yet
/**
* @description returns whether `a` and `parent[a]` is in the same splay tree
*/
int get_parent_edge_type(int a) const {
if (parent[a] != -1 and left[parent[a]] == a) {
assert (not is_reversed[parent[a]]);
return -1; // heavy (left-child)
} else if (parent[a] != -1 and right[parent[a]] == a) {
assert (not is_reversed[parent[a]]);
return +1; // heavy (right-child)
} else {
return 0; // light
}
}
/**
* @description make `a` the parent of the current parent of `a`
*/
void rotate(int a) {
int b = parent[a];
assert (b != -1);
assert (not is_reversed[b]);
assert (not is_reversed[a]);
switch (get_parent_edge_type(b)) {
case -1: // left
left[parent[b]] = a;
break;
case 1: // right
right[parent[b]] = a;
break;
}
switch (get_parent_edge_type(a)) {
case -1: // left
parent[a] = std::exchange(parent[b], a);
left[b] = std::exchange(right[a], b);
if (left[b] != -1) parent[left[b]] = b;
break;
case 1: // right
parent[a] = std::exchange(parent[b], a);
right[b] = std::exchange(left[a], b);
if (right[b] != -1) parent[right[b]] = b;
break;
default: // root
assert (false);
}
update_path(b);
update_path(a);
}
/**
* @description make `a` the root of the beloging splay tree
*/
void splay(int a) {
propagate_reverse_splay(a);
while (get_parent_edge_type(a)) {
// a is not the root of the splay tree
if (not get_parent_edge_type(parent[a])) {
// zig step: parent[a] is the root of the splay tree
rotate(a);
} else if (get_parent_edge_type(a) == get_parent_edge_type(parent[a])) {
// zig-zig step
rotate(parent[a]);
rotate(a);
} else {
// zig-zag step
rotate(a);
rotate(a);
}
}
}
/**
* @description make `a` the root of the auxiliary tree
* @note `a` becomes a terminal of the heavy path
*/
void expose(int a) {
// make a light path from `a` to the root
for (int b = a; b != -1; b = parent[b]) {
splay(b);
}
// make `a` the terminal of the path
assert (not is_reversed[a]);
left[a] = -1;
update_path(a);
// make the path heavy
for (int b = a; parent[b] != -1; b = parent[b]) {
left[parent[b]] = b;
update_path(parent[b]);
}
splay(a);
}
void propagate_reverse_node(int a) {
if (is_reversed[a]) {
is_reversed[a] = false;
path[a] = reversible_monoid<Monoid>::reverse(path[a]);
if (right[a] != -1) is_reversed[right[a]] = not is_reversed[right[a]];
if (left[a] != -1) is_reversed[left[a]] = not is_reversed[left[a]];
std::swap(left[a], right[a]);
}
}
void propagate_reverse_splay(int a) {
if (parent[a] != -1 and (left[parent[a]] == a or right[parent[a]] == a)) {
propagate_reverse_splay(parent[a]);
}
propagate_reverse_node(a);
if (right[a] != -1) propagate_reverse_node(right[a]);
if (left[a] != -1) propagate_reverse_node(left[a]);
}
/**
* @note `a` should be the root of the splay tree
*/
void update_path(int a) {
path[a] = reversible_monoid<Monoid>::make(data[a]);
if (right[a] != -1) path[a] = mon.mult(path[a], path[right[a]]);
if (left[a] != -1) path[a] = mon.mult(path[left[a]], path[a]);
}
public:
link_cut_tree(int size, const Monoid & mon_ = Monoid())
: mon(mon_), data(size, mon.base.unit()), path(size, mon.unit()), parent(size, -1), left(size, -1), right(size, -1), is_reversed(size, false) {
}
/**
* @description make a direct edge from `a` to `b`
* @note `a` must be a root
* @note `b` must not be a descendant of `a`
*/
void link(int a, int b) {
expose(b); // for the time complexity
expose(a); // to make `a` the root
assert (not is_reversed[a]);
assert (right[a] == -1); // `a` must be a root
parent[a] = b;
}
/**
* @description remove the direct edge from `a`
* @note `a` must not be a root
*/
void cut(int a) {
expose(a); // to make `a` the root
assert (not is_reversed[a]);
assert (right[a] != -1); // `a` must not be a root
parent[right[a]] = -1;
right[a] = -1;
update_path(a);
}
/**
* @note -1 is returned when `a` and `b` are not in the same tree
*/
int get_lowest_common_ancestor(int a, int b) {
expose(b); // for the time complexity
expose(a); // to make `a` the root
assert (not is_reversed[a]);
int preserved = -1;
std::swap(left[a], preserved); // make `a` and `b` belong different splay trees even if `b` is a descendant of `a`
int result = b;
int c = b;
for (; c != a and c != -1; c = parent[c]) {
assert (parent[c] != -1);
if (not get_parent_edge_type(c)) { // when it enters another splay tree
result = parent[c];
}
}
std::swap(left[a], preserved);
return c == a ? result : -1;
}
bool are_connected(int a, int b) {
return get_lowest_common_ancestor(a, b) != -1;
}
int get_parent(int a) {
expose(a);
assert (not is_reversed[a]);
if (right[a] == -1) return parent[a];
for (int b = right[a]; ; b = left[b]) {
propagate_reverse_node(b);
if (left[b] == -1) {
splay(b); // for the time complexity
return b;
}
}
}
int get_root(int a) {
expose(a);
assert (not is_reversed[a]);
while (right[a] != -1) {
a = right[a];
}
splay(a); // for the time complexity
return a;
}
/**
* @description make `a` the root of the represented tree
*/
void evert(int a) {
expose(a); // to make `a` the root
assert (not is_reversed[a]);
assert (left[a] == -1); // `a` is the terminal
is_reversed[a] = true;
}
void vertex_set(int a, value_type value) {
splay(a); // to make `a` the root of a splay tree
data[a] = value;
update_path(a);
}
value_type vertex_get(int a) const {
return data[a];
}
value_type path_get(int a, int b) {
expose(a); // for the time complexity
expose(b); // to make `b` the root
assert (not is_reversed[a]);
auto data_a = reversible_monoid<Monoid>::make(data[a]);
reversible_type up = (right[a] == -1 ? data_a : mon.mult(data_a, path[right[a]]));
reversible_type down = (left[a] == -1 ? data_a : mon.mult(path[left[a]], data_a));
for (int c = a; c != b and c != -1; c = parent[c]) {
assert (parent[c] != -1);
assert (not is_reversed[parent[c]]);
auto data_parent_c = reversible_monoid<Monoid>::make(data[parent[c]]);
switch (get_parent_edge_type(c)) {
case -1: // heavy (left-child)
up = mon.mult(up, data_parent_c);
if (right[parent[c]] != -1) up = mon.mult(up, path[right[parent[c]]]);
break;
case 1: // heavy (right-child)
down = mon.mult(data_parent_c, down);
if (left[parent[c]] != -1) down = mon.mult(path[left[parent[c]]], down);
break;
case 0: // light
down = reversible_monoid<Monoid>::reverse(up);
up = mon.mult(up, data_parent_c);
if (right[parent[c]] != -1) up = mon.mult(up, path[right[parent[c]]]);
down = mon.mult(data_parent_c, down);
if (left[parent[c]] != -1) down = mon.mult(path[left[parent[c]]], down);
break;
}
}
return reversible_monoid<Monoid>::get(reversible_monoid<Monoid>::reverse(down));
}
std::string to_graphviz() const {
using namespace std;
ostringstream oss;
oss << "digraph G {" << endl;
oss << " graph [ rankdir = BT, bgcolor = \"#00000000\" ]" << endl;
oss << " node [ shape = circle, style = filled, fillcolor = \"#ffffffff\" ]" << endl;
REP (a, parent.size()) {
// oss << " " << a << ";" << endl;
oss << " " << a << "[ label = \"" << a << "(" << data[a] << "," << path[a] << (is_reversed[a] ? " +rev" : "") << ")\"];" << endl;
}
function <void (int)> go = [&](int a) {
if (parent[a] != -1 and not get_parent_edge_type(a)) {
oss << " " << a << " -> " << parent[a] << " [ style = dashed ]" << endl;
}
if (left[a] != -1 or right[a] != -1) {
string l = (left[a] != -1 ? to_string(left[a]) : "l" + to_string(a));
string r = (right[a] != -1 ? to_string(right[a]) : "r" + to_string(a));
oss << " " << l << " -> " << a << endl;
oss << " " << l << " -> " << r << " [ style = invis ]" << endl;
oss << " " << r << " -> " << a << endl;
oss << " { rank = same; " << l << "; " << r << "; }" << endl;
if (left[a] == -1) oss << " " << l << " [ style = invis ]" << endl;
if (right[a] == -1) oss << " " << r << " [ style = invis ]" << endl;
}
if (left[a] != -1) go(left[a]);
if (right[a] != -1) go(right[a]);
};
REP (a, parent.size()) if (not get_parent_edge_type(a)) {
go(a);
}
oss << "}";
return oss.str();
}
};
#line 2 "modulus/mint.hpp"
#include <cstdint>
#include <iostream>
#line 4 "modulus/modpow.hpp"
inline int32_t modpow(uint_fast64_t x, uint64_t k, int32_t MOD) {
assert (/* 0 <= x and */ x < (uint_fast64_t)MOD);
uint_fast64_t y = 1;
for (; k; k >>= 1) {
if (k & 1) (y *= x) %= MOD;
(x *= x) %= MOD;
}
assert (/* 0 <= y and */ y < (uint_fast64_t)MOD);
return y;
}
#line 5 "modulus/modinv.hpp"
inline int32_t modinv_nocheck(int32_t value, int32_t MOD) {
assert (0 <= value and value < MOD);
if (value == 0) return -1;
int64_t a = value, b = MOD;
int64_t x = 0, y = 1;
for (int64_t u = 1, v = 0; a; ) {
int64_t q = b / a;
x -= q * u; std::swap(x, u);
y -= q * v; std::swap(y, v);
b -= q * a; std::swap(b, a);
}
if (not (value * x + MOD * y == b and b == 1)) return -1;
if (x < 0) x += MOD;
assert (0 <= x and x < MOD);
return x;
}
inline int32_t modinv(int32_t x, int32_t MOD) {
int32_t y = modinv_nocheck(x, MOD);
assert (y != -1);
return y;
}
#line 6 "modulus/mint.hpp"
/**
* @brief quotient ring / 剰余環 $\mathbb{Z}/n\mathbb{Z}$
*/
template <int32_t MOD>
struct mint {
int32_t value;
mint() : value() {}
mint(int64_t value_) : value(value_ < 0 ? value_ % MOD + MOD : value_ >= MOD ? value_ % MOD : value_) {}
mint(int32_t value_, std::nullptr_t) : value(value_) {}
explicit operator bool() const { return value; }
inline mint<MOD> operator + (mint<MOD> other) const { return mint<MOD>(*this) += other; }
inline mint<MOD> operator - (mint<MOD> other) const { return mint<MOD>(*this) -= other; }
inline mint<MOD> operator * (mint<MOD> other) const { return mint<MOD>(*this) *= other; }
inline mint<MOD> & operator += (mint<MOD> other) { this->value += other.value; if (this->value >= MOD) this->value -= MOD; return *this; }
inline mint<MOD> & operator -= (mint<MOD> other) { this->value -= other.value; if (this->value < 0) this->value += MOD; return *this; }
inline mint<MOD> & operator *= (mint<MOD> other) { this->value = (uint_fast64_t)this->value * other.value % MOD; return *this; }
inline mint<MOD> operator - () const { return mint<MOD>(this->value ? MOD - this->value : 0, nullptr); }
inline bool operator == (mint<MOD> other) const { return value == other.value; }
inline bool operator != (mint<MOD> other) const { return value != other.value; }
inline mint<MOD> pow(uint64_t k) const { return mint<MOD>(modpow(value, k, MOD), nullptr); }
inline mint<MOD> inv() const { return mint<MOD>(modinv(value, MOD), nullptr); }
inline mint<MOD> operator / (mint<MOD> other) const { return *this * other.inv(); }
inline mint<MOD> & operator /= (mint<MOD> other) { return *this *= other.inv(); }
};
template <int32_t MOD> mint<MOD> operator + (int64_t value, mint<MOD> n) { return mint<MOD>(value) + n; }
template <int32_t MOD> mint<MOD> operator - (int64_t value, mint<MOD> n) { return mint<MOD>(value) - n; }
template <int32_t MOD> mint<MOD> operator * (int64_t value, mint<MOD> n) { return mint<MOD>(value) * n; }
template <int32_t MOD> mint<MOD> operator / (int64_t value, mint<MOD> n) { return mint<MOD>(value) / n; }
template <int32_t MOD> std::istream & operator >> (std::istream & in, mint<MOD> & n) { int64_t value; in >> value; n = value; return in; }
template <int32_t MOD> std::ostream & operator << (std::ostream & out, mint<MOD> n) { return out << n.value; }
#line 3 "monoids/linear_function.hpp"
template <class CommutativeRing>
struct linear_function_monoid {
typedef std::pair<CommutativeRing, CommutativeRing> value_type;
linear_function_monoid() = default;
value_type unit() const {
return std::make_pair(1, 0);
}
value_type mult(value_type g, value_type f) const {
CommutativeRing fst = g.first * f.first;
CommutativeRing snd = g.second + g.first * f.second;
return std::make_pair(fst, snd);
}
};
#line 2 "monoids/dual.hpp"
/**
* @see http://hackage.haskell.org/package/base/docs/Data-Monoid.html#t:Dual
*/
template <class Monoid>
struct dual_monoid {
typedef typename Monoid::value_type value_type;
Monoid base;
value_type unit() const { return base.unit(); }
value_type mult(const value_type & a, const value_type & b) const { return base.mult(b, a); }
};
#line 3 "hack/fastio.hpp"
#include <cstdio>
#include <string>
#include <type_traits>
template <class Char, std::enable_if_t<std::is_same_v<Char, char>, int> = 0>
inline Char in() { return getchar_unlocked(); }
template <class String, std::enable_if_t<std::is_same_v<String, std::string>, int> = 0>
inline std::string in() {
char c; do { c = getchar_unlocked(); } while (isspace(c));
std::string s;
do { s.push_back(c); } while (not isspace(c = getchar_unlocked()));
return s;
}
template <class Integer, std::enable_if_t<std::is_integral_v<Integer> and not std::is_same_v<Integer, char>, int> = 0>
inline Integer in() {
char c; do { c = getchar_unlocked(); } while (isspace(c));
if (std::is_signed<Integer>::value and c == '-') return -in<Integer>();
Integer n = 0;
do { n = n * 10 + c - '0'; } while (not isspace(c = getchar_unlocked()));
return n;
}
template <class Char, std::enable_if_t<std::is_same_v<Char, char>, int> = 0>
inline void out(char c) { putchar_unlocked(c); }
template <class String, std::enable_if_t<std::is_same_v<String, std::string>, int> = 0>
inline void out(const std::string & s) { for (char c : s) putchar_unlocked(c); }
template <class Integer, std::enable_if_t<std::is_integral_v<Integer>, int> = 0>
inline void out(Integer n) {
char s[20];
int i = 0;
if (std::is_signed<Integer>::value and n < 0) { putchar_unlocked('-'); n *= -1; }
do { s[i ++] = n % 10; n /= 10; } while (n);
while (i) putchar_unlocked(s[-- i] + '0');
}
#line 8 "data_structure/link_cut_tree.dynamic_tree_vertex_set_path_composite.test.cpp"
#include <stack>
#line 10 "data_structure/link_cut_tree.dynamic_tree_vertex_set_path_composite.test.cpp"
constexpr int MOD = 998244353;
int main() {
int n = in<int>();
int q = in<int>();
// initialize
link_cut_tree<dual_monoid<linear_function_monoid<mint<MOD> > > > lct(n);
REP (i, n) {
mint<MOD> a_i = in<int32_t>();
mint<MOD> b_i = in<int32_t>();
lct.vertex_set(i, std::make_pair(a_i, b_i));
}
std::vector<std::vector<int> > g(n);
REP (i, n - 1) {
int u = in<int>();
int v = in<int>();
g[u].push_back(v);
g[v].push_back(u);
}
std::vector<bool> used(n);
std::stack<int> stk;
stk.push(0);
used[0] = true;
while (not stk.empty()) {
int u = stk.top();
stk.pop();
for (int v : g[u]) if (not used[v]) {
lct.link(v, u);
stk.push(v);
used[v] = true;
}
}
// answer to queries
while (q --) {
int t = in<int>();
if (t == 0) {
int u = in<int>();
int v = in<int>();
int w = in<int>();
int x = in<int>();
lct.cut(lct.get_parent(u) == v ? u : v);
lct.evert(w);
lct.link(w, x);
} else if (t == 1) {
int u = in<int>();
mint<MOD> c = in<int32_t>();
mint<MOD> d = in<int32_t>();
lct.vertex_set(u, std::make_pair(c, d));
} else if (t == 2) {
int u = in<int>();
int v = in<int>();
mint<MOD> x = in<int32_t>();
auto [a, b] = lct.path_get(u, v);
out<int32_t>((a * x + b).value);
out<char>('\n');
}
}
return 0;
}