This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub kmyk/competitive-programming-library
#define PROBLEM "https://judge.yosupo.jp/problem/range_affine_range_sum"
#include "../data_structure/lazy_propagation_red_black_tree.hpp"
#include "../monoids/plus_count.hpp"
#include "../monoids/linear_function.hpp"
#include "../monoids/linear_function_plus_count_action.hpp"
#include "../modulus/mint.hpp"
#include "../utils/macros.hpp"
#include <cstdio>
#include <utility>
#include <vector>
using namespace std;
constexpr int MOD = 998244353;
int main() {
int n, q; scanf("%d%d", &n, &q);
vector<pair<mint<MOD>, int> > a(n);
REP (i, n) {
int a_i; scanf("%d", &a_i);
a[i].first = a_i;
a[i].second = 1;
}
lazy_propagation_red_black_tree<plus_count_monoid<mint<MOD> >, linear_function_monoid<mint<MOD> >, linear_function_plus_count_action<mint<MOD> > > segtree(ALL(a));
while (q --) {
int t; scanf("%d", &t);
if (t == 0) {
int l, r, b, c; scanf("%d%d%d%d", &l, &r, &b, &c);
pair<mint<MOD>, mint<MOD> > f(b, c);
segtree.range_apply(l, r, f);
} else if (t == 1) {
int l, r; scanf("%d%d", &l, &r);
mint<MOD> answer = segtree.range_get(l, r).first;
printf("%d\n", answer.value);
}
}
return 0;
}
#line 1 "data_structure/lazy_propagation_red_black_tree.range_affine_range_sum.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/range_affine_range_sum"
#line 2 "data_structure/lazy_propagation_red_black_tree.hpp"
#include <algorithm>
#include <cassert>
#include <memory>
#include <type_traits>
#include <vector>
/**
* @brief Lazy Propagation Segment Tree / 遅延伝播セグメント木 (monoids, 赤黒木)
* @docs data_structure/lazy_propagation_red_black_tree.md
* @tparam MonoidX is a monoid
* @tparam MonoidF is a monoid
* @tparam Action is a function phi : F * X -> X where the partial applied phi(f, -) : X -> X is a homomorphism on X
*/
template <class MonoidX, class MonoidF, class Action>
class lazy_propagation_red_black_tree {
static_assert (std::is_invocable_r<typename MonoidX::value_type, Action, typename MonoidF::value_type, typename MonoidX::value_type>::value, "");
typedef typename MonoidX::value_type value_type;
typedef typename MonoidF::value_type operator_type;
enum color_t { BLACK, RED };
struct node_t {
bool is_leaf;
value_type data;
operator_type lazy; // NOTE: this->lazy is already applied to this->data
bool reversed;
color_t color;
int rank;
int size;
node_t *left;
node_t *right;
node_t() = default;
node_t(value_type const & a_data)
: is_leaf(true)
, data(a_data)
, color(BLACK)
, rank(0)
, size(1) {
}
node_t(node_t *l, node_t *r, color_t c) // non-leaf node
: is_leaf(false)
, data(MonoidX().mult(l->data, r->data))
, lazy(MonoidF().unit())
, reversed(false)
, color(c)
, rank(std::max(l->rank + (l->color == BLACK),
r->rank + (r->color == BLACK)))
, size(l->size + r->size)
, left(l)
, right(r) {
}
};
struct node_deleter {
void operator () (node_t *t) const {
assert (t != nullptr);
if (not t->is_leaf) {
(*this)(t->right);
(*this)(t->left);
}
delete t;
}
};
static void propagate_only_operator(node_t *a) {
MonoidF mon_f;
Action act;
if (not a->is_leaf) {
if (a->lazy != mon_f.unit()) {
auto const & l = a->left;
auto const & r = a->right;
l->data = act(a->lazy, l->data);
r->data = act(a->lazy, r->data);
if (not l->is_leaf) l->lazy = mon_f.mult(a->lazy, l->lazy);
if (not r->is_leaf) r->lazy = mon_f.mult(a->lazy, r->lazy);
a->lazy = mon_f.unit();
}
}
}
static void propagate_only_reverse(node_t *a) {
if (not a->is_leaf) {
if (a->reversed) {
auto const & l = a->left;
auto const & r = a->right;
if (not l->is_leaf) l->reversed = not l->reversed;
if (not r->is_leaf) r->reversed = not r->reversed;
std::swap(a->left, a->right); // CAUTION: auto const & l, r are destroyed
a->reversed = false;
}
}
}
static void propagate(node_t *a) {
propagate_only_operator(a);
propagate_only_reverse(a);
}
/**
* @note trees a, b are consumed (at set_left()/set_right())
*/
static node_t *merge(node_t *a, node_t *b) {
if (a == nullptr) return b;
if (b == nullptr) return a;
node_t *c = merge_relax(a, b);
c->color = BLACK;
return c;
}
/*
* @note the root of returned tree may violates the color constraint
*/
static node_t *merge_relax(node_t *a, node_t *b) {
if ((a->rank) < b->rank) {
assert (not b->is_leaf);
propagate(b);
return set_left(b, merge_relax(a, b->left));
} else if (a->rank > b->rank) {
assert (not a->is_leaf);
propagate(a);
return set_right(a, merge_relax(a->right, b));
} else {
a->color = BLACK;
b->color = BLACK;
return new node_t(a, b, RED);
}
}
static node_t *set_left(node_t *b, node_t *c) {
if (b->color == BLACK and c->color == RED and c->left->color == RED) {
if (b->right->color == BLACK) {
*b = node_t(c->right, b->right, RED);
*c = node_t(c->left, b, BLACK);
std::swap(b, c);
} else {
b->right->color = BLACK;
c->color = BLACK;
*b = node_t(c, b->right, RED);
}
} else {
*b = node_t(c, b->right, b->color);
}
return b;
}
static node_t *set_right(node_t *a, node_t *c) {
if (a->color == BLACK and c->color == RED and c->right->color == RED) {
if (a->left->color == BLACK) {
*a = node_t(a->left, c->left, RED);
*c = node_t(a, c->right, BLACK);
std::swap(a, c);
} else {
a->left->color = BLACK;
c->color = BLACK;
*a = node_t(a->left, c, RED);
}
} else {
*a = node_t(a->left, c, a->color);
}
return a;
}
/**
* @note tree a is consumed (at explicit delete and merge())
*/
static std::pair<node_t *, node_t *> split(node_t *a, int k) {
if (k == 0) {
return std::make_pair( nullptr, a );
}
assert (a != nullptr);
if (k == a->size) {
return std::make_pair( a, nullptr );
}
assert (not a->is_leaf);
propagate(a);
node_t *a_left = a->left;
node_t *a_right = a->right;
delete a;
if (k < a_left->size) {
node_t *l, *r; tie(l, r) = split(a_left, k);
return std::make_pair( l, merge(r, a_right) );
} else if (k > a_left->size) {
node_t *l, *r; tie(l, r) = split(a_right, k - a_left->size);
return std::make_pair( merge(a_left, l), r );
} else {
return std::make_pair( a_left, a_right );
}
}
static void range_apply(node_t *a, int l, int r, const operator_type & func) {
MonoidX mon_x;
MonoidF mon_f;
Action act;
if (l == r) return;
if (l == 0 and r == a->size) {
a->data = act(func, a->data);
if (not a->is_leaf) a->lazy = mon_f.mult(func, a->lazy);
return;
}
assert (not a->is_leaf);
propagate(a);
int k = a->left->size;
if (r <= k) {
range_apply(a->left, l, r, func);
} else if (k <= l) {
range_apply(a->right, l - k, r - k, func);
} else {
range_apply(a->left, l, k, func);
range_apply(a->right, 0, r - k, func);
}
a->data = act(a->lazy, mon_x.mult(a->left->data, a->right->data));
}
static value_type range_get(node_t *a, int l, int r) {
MonoidX mon_x;
assert (l < r);
if (l == 0 and r == a->size) return a->data;
assert (not a->is_leaf);
propagate(a);
int k = a->left->size;
if (r <= k) {
return range_get(a->left, l, r);
} else if (k <= l) {
return range_get(a->right, l - k, r - k);
} else {
return mon_x.mult(
range_get(a->left, l, k),
range_get(a->right, 0, r - k));
}
}
static node_t *reverse(node_t *a, int l, int r) {
// TODO: find ways to do without split. there may be clever ways using recursion
if (l == r) return a;
node_t *bl, *br; tie(bl, br) = split(a, r);
node_t *bm; tie(bl, bm) = split(bl, l);
if (not bm->is_leaf) bm->reversed = not bm->reversed;
return merge(merge(bl, bm), br);
}
static void point_set(node_t *a, int i, const value_type & value) {
MonoidX mon_x;
Action act;
if (a->is_leaf) {
assert (i == 0);
a->data = value;
} else {
propagate_only_reverse(a); // should we do full propagation?
if (i < a->left->size) {
point_set(a->left, i, value);
} else {
point_set(a->right, i - a->left->size, value);
}
a->data = act(a->lazy,
mon_x.mult(a->left->data, a->right->data));
}
}
static value_type & point_get(node_t *a, int i) {
if (a->is_leaf) {
assert (i == 0);
return a->data;
} else {
propagate(a);
if (i < a->left->size) {
return point_get(a->left, i);
} else {
return point_get(a->right, i - a->left->size);
}
}
}
private:
std::unique_ptr<node_t, node_deleter> root;
public:
lazy_propagation_red_black_tree() = default;
lazy_propagation_red_black_tree(node_t *a_root)
: root(a_root) {
}
template <class InputIterator>
lazy_propagation_red_black_tree(InputIterator first, InputIterator last)
: root(nullptr) {
for (; first != last; ++ first) {
this->push_back(*first);
}
}
static lazy_propagation_red_black_tree merge(lazy_propagation_red_black_tree & l, lazy_propagation_red_black_tree & r) {
node_t *a = l.root.release();
node_t *b = r.root.release();
if (a == nullptr) return lazy_propagation_red_black_tree(b);
if (b == nullptr) return lazy_propagation_red_black_tree(a);
return lazy_propagation_red_black_tree(merge(a, b));
}
std::pair<lazy_propagation_red_black_tree, lazy_propagation_red_black_tree> split(int k) {
assert (0 <= k and k <= size());
node_t *l, *r; tie(l, r) = split(root.release(), k);
return std::make_pair( lazy_propagation_red_black_tree(l), lazy_propagation_red_black_tree(r) );
}
void insert(int i, const value_type & data) {
assert (0 <= i and i <= size());
if (empty()) {
root.reset(new node_t(data));
return;
} else {
node_t *l, *r; tie(l, r) = split(root.release(), i);
root.reset( merge(merge(l, new node_t(data)), r) );
}
}
void erase(int i) {
assert (0 <= i and i < size());
node_t *l, *r; tie(l, r) = split(root.release(), i + 1);
node_t *m; tie(l, m) = split(l, i);
node_deleter()(m);
root.reset( merge(l, r) );
}
void point_set(int i, const value_type & value) {
assert (0 <= i and i < size());
point_set(root.get(), i, value);
}
value_type const & point_get(int i) const {
assert (0 <= i and i < size());
return point_get(const_cast<node_t *>(root.get()), i);
}
void range_apply(int l, int r, const operator_type & func) {
assert (0 <= l and l <= r and r <= size());
if (l == r) return;
range_apply(root.get(), l, r, func);
}
value_type const range_get(int l, int r) const {
assert (0 <= l and l <= r and r <= size());
if (l == r) return MonoidX().unit();
return range_get(const_cast<node_t *>(root.get()), l, r);
}
void reverse(int l, int r) {
assert (0 <= l and l <= r and r <= size());
if (not root) return;
root.reset( reverse(root.release(), l, r) );
}
void push_back(const value_type & data) {
root.reset( merge(root.release(), new node_t(data)) );
}
void push_front(const value_type & data) {
root.reset( merge(new node_t(data), root.release()) );
}
void pop_back() {
int k = size() - 1;
auto lr = split(root.release(), k);
root.reset(lr.first);
node_deleter()(lr.second);
}
void pop_front() {
auto lr = split(root.release(), 1);
node_deleter()(lr.first);
root.reset(lr.second);
}
int size() const {
return root ? root.get()->size : 0;
}
bool empty() const {
return not root;
}
void clear() {
root = nullptr;
}
};
#line 2 "monoids/plus_count.hpp"
#include <utility>
template <class T>
struct plus_count_monoid {
typedef std::pair<T, int> value_type;
value_type unit() const {
return std::make_pair(T(), 0);
}
value_type mult(value_type a, value_type b) const {
return std::make_pair(a.first + b.first, a.second + b.second);
}
static value_type make(T a) {
return std::make_pair(a, 1);
}
};
#line 3 "monoids/linear_function.hpp"
template <class CommutativeRing>
struct linear_function_monoid {
typedef std::pair<CommutativeRing, CommutativeRing> value_type;
linear_function_monoid() = default;
value_type unit() const {
return std::make_pair(1, 0);
}
value_type mult(value_type g, value_type f) const {
CommutativeRing fst = g.first * f.first;
CommutativeRing snd = g.second + g.first * f.second;
return std::make_pair(fst, snd);
}
};
#line 4 "monoids/linear_function_plus_count_action.hpp"
/**
* @note lazy_propagation_segment_tree<plus_count_monoid<T>, linear_function_monoid<T>, linear_function_plus_count_action<T> >
*/
template <class T>
struct linear_function_plus_count_action {
typename plus_count_monoid<T>::value_type operator () (typename linear_function_monoid<T>::value_type f, typename plus_count_monoid<T>::value_type x) const {
return std::make_pair(f.first * x.first + f.second * x.second, x.second);
}
};
#line 2 "modulus/mint.hpp"
#include <cstdint>
#include <iostream>
#line 4 "modulus/modpow.hpp"
inline int32_t modpow(uint_fast64_t x, uint64_t k, int32_t MOD) {
assert (/* 0 <= x and */ x < (uint_fast64_t)MOD);
uint_fast64_t y = 1;
for (; k; k >>= 1) {
if (k & 1) (y *= x) %= MOD;
(x *= x) %= MOD;
}
assert (/* 0 <= y and */ y < (uint_fast64_t)MOD);
return y;
}
#line 5 "modulus/modinv.hpp"
inline int32_t modinv_nocheck(int32_t value, int32_t MOD) {
assert (0 <= value and value < MOD);
if (value == 0) return -1;
int64_t a = value, b = MOD;
int64_t x = 0, y = 1;
for (int64_t u = 1, v = 0; a; ) {
int64_t q = b / a;
x -= q * u; std::swap(x, u);
y -= q * v; std::swap(y, v);
b -= q * a; std::swap(b, a);
}
if (not (value * x + MOD * y == b and b == 1)) return -1;
if (x < 0) x += MOD;
assert (0 <= x and x < MOD);
return x;
}
inline int32_t modinv(int32_t x, int32_t MOD) {
int32_t y = modinv_nocheck(x, MOD);
assert (y != -1);
return y;
}
#line 6 "modulus/mint.hpp"
/**
* @brief quotient ring / 剰余環 $\mathbb{Z}/n\mathbb{Z}$
*/
template <int32_t MOD>
struct mint {
int32_t value;
mint() : value() {}
mint(int64_t value_) : value(value_ < 0 ? value_ % MOD + MOD : value_ >= MOD ? value_ % MOD : value_) {}
mint(int32_t value_, std::nullptr_t) : value(value_) {}
explicit operator bool() const { return value; }
inline mint<MOD> operator + (mint<MOD> other) const { return mint<MOD>(*this) += other; }
inline mint<MOD> operator - (mint<MOD> other) const { return mint<MOD>(*this) -= other; }
inline mint<MOD> operator * (mint<MOD> other) const { return mint<MOD>(*this) *= other; }
inline mint<MOD> & operator += (mint<MOD> other) { this->value += other.value; if (this->value >= MOD) this->value -= MOD; return *this; }
inline mint<MOD> & operator -= (mint<MOD> other) { this->value -= other.value; if (this->value < 0) this->value += MOD; return *this; }
inline mint<MOD> & operator *= (mint<MOD> other) { this->value = (uint_fast64_t)this->value * other.value % MOD; return *this; }
inline mint<MOD> operator - () const { return mint<MOD>(this->value ? MOD - this->value : 0, nullptr); }
inline bool operator == (mint<MOD> other) const { return value == other.value; }
inline bool operator != (mint<MOD> other) const { return value != other.value; }
inline mint<MOD> pow(uint64_t k) const { return mint<MOD>(modpow(value, k, MOD), nullptr); }
inline mint<MOD> inv() const { return mint<MOD>(modinv(value, MOD), nullptr); }
inline mint<MOD> operator / (mint<MOD> other) const { return *this * other.inv(); }
inline mint<MOD> & operator /= (mint<MOD> other) { return *this *= other.inv(); }
};
template <int32_t MOD> mint<MOD> operator + (int64_t value, mint<MOD> n) { return mint<MOD>(value) + n; }
template <int32_t MOD> mint<MOD> operator - (int64_t value, mint<MOD> n) { return mint<MOD>(value) - n; }
template <int32_t MOD> mint<MOD> operator * (int64_t value, mint<MOD> n) { return mint<MOD>(value) * n; }
template <int32_t MOD> mint<MOD> operator / (int64_t value, mint<MOD> n) { return mint<MOD>(value) / n; }
template <int32_t MOD> std::istream & operator >> (std::istream & in, mint<MOD> & n) { int64_t value; in >> value; n = value; return in; }
template <int32_t MOD> std::ostream & operator << (std::ostream & out, mint<MOD> n) { return out << n.value; }
#line 2 "utils/macros.hpp"
#define REP(i, n) for (int i = 0; (i) < (int)(n); ++ (i))
#define REP3(i, m, n) for (int i = (m); (i) < (int)(n); ++ (i))
#define REP_R(i, n) for (int i = (int)(n) - 1; (i) >= 0; -- (i))
#define REP3R(i, m, n) for (int i = (int)(n) - 1; (i) >= (int)(m); -- (i))
#define ALL(x) std::begin(x), std::end(x)
#line 8 "data_structure/lazy_propagation_red_black_tree.range_affine_range_sum.test.cpp"
#include <cstdio>
#line 11 "data_structure/lazy_propagation_red_black_tree.range_affine_range_sum.test.cpp"
using namespace std;
constexpr int MOD = 998244353;
int main() {
int n, q; scanf("%d%d", &n, &q);
vector<pair<mint<MOD>, int> > a(n);
REP (i, n) {
int a_i; scanf("%d", &a_i);
a[i].first = a_i;
a[i].second = 1;
}
lazy_propagation_red_black_tree<plus_count_monoid<mint<MOD> >, linear_function_monoid<mint<MOD> >, linear_function_plus_count_action<mint<MOD> > > segtree(ALL(a));
while (q --) {
int t; scanf("%d", &t);
if (t == 0) {
int l, r, b, c; scanf("%d%d%d%d", &l, &r, &b, &c);
pair<mint<MOD>, mint<MOD> > f(b, c);
segtree.range_apply(l, r, f);
} else if (t == 1) {
int l, r; scanf("%d%d", &l, &r);
mint<MOD> answer = segtree.range_get(l, r).first;
printf("%d\n", answer.value);
}
}
return 0;
}