This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub kmyk/competitive-programming-library
#include "data_structure/dual_segment_tree.hpp"
monoid $F = (F, \circ, \mathrm{id})$ の要素の列 $f = (f_0, f_1, \dots, f _ {n - 1}) \in F^n$ に対し、次が $O(\log N)$ で処理可能:
#pragma once
#include <algorithm>
#include <cassert>
#include <vector>
/**
* @brief Dual Segment Tree / 双対セグメント木 (monoids, 完全二分木)
* @docs data_structure/dual_segment_tree.md
* @tparam Monoid (commutativity is not required)
*/
template <class Monoid>
struct dual_segment_tree {
typedef typename Monoid::value_type value_type;
const Monoid mon;
int n;
std::vector<value_type> f;
dual_segment_tree() = default;
dual_segment_tree(int n_, const Monoid & mon_ = Monoid()) : mon(mon_) {
n = 1; while (n < n_) n *= 2;
f.resize(2 * n - 1, mon.unit());
}
value_type point_get(int i) { // 0-based
assert (0 <= i and i < n);
value_type acc = mon.unit();
for (i += n; i > 0; i /= 2) { // 1-based
acc = mon.mult(f[i - 1], acc);
}
return acc;
}
void range_apply(int l, int r, value_type g) { // 0-based, [l, r)
assert (0 <= l and l <= r and r <= n);
range_apply(0, 0, n, l, r, g);
}
void range_apply(int i, int il, int ir, int l, int r, value_type g) {
if (l <= il and ir <= r) { // 0-based
f[i] = mon.mult(g, f[i]);
} else if (ir <= l or r <= il) {
// nop
} else {
range_apply(2 * i + 1, il, (il + ir) / 2, 0, n, f[i]);
range_apply(2 * i + 2, (il + ir) / 2, ir, 0, n, f[i]);
f[i] = mon.unit();
range_apply(2 * i + 1, il, (il + ir) / 2, l, r, g);
range_apply(2 * i + 2, (il + ir) / 2, ir, l, r, g);
}
}
};
#line 2 "data_structure/dual_segment_tree.hpp"
#include <algorithm>
#include <cassert>
#include <vector>
/**
* @brief Dual Segment Tree / 双対セグメント木 (monoids, 完全二分木)
* @docs data_structure/dual_segment_tree.md
* @tparam Monoid (commutativity is not required)
*/
template <class Monoid>
struct dual_segment_tree {
typedef typename Monoid::value_type value_type;
const Monoid mon;
int n;
std::vector<value_type> f;
dual_segment_tree() = default;
dual_segment_tree(int n_, const Monoid & mon_ = Monoid()) : mon(mon_) {
n = 1; while (n < n_) n *= 2;
f.resize(2 * n - 1, mon.unit());
}
value_type point_get(int i) { // 0-based
assert (0 <= i and i < n);
value_type acc = mon.unit();
for (i += n; i > 0; i /= 2) { // 1-based
acc = mon.mult(f[i - 1], acc);
}
return acc;
}
void range_apply(int l, int r, value_type g) { // 0-based, [l, r)
assert (0 <= l and l <= r and r <= n);
range_apply(0, 0, n, l, r, g);
}
void range_apply(int i, int il, int ir, int l, int r, value_type g) {
if (l <= il and ir <= r) { // 0-based
f[i] = mon.mult(g, f[i]);
} else if (ir <= l or r <= il) {
// nop
} else {
range_apply(2 * i + 1, il, (il + ir) / 2, 0, n, f[i]);
range_apply(2 * i + 2, (il + ir) / 2, ir, 0, n, f[i]);
f[i] = mon.unit();
range_apply(2 * i + 1, il, (il + ir) / 2, l, r, g);
range_apply(2 * i + 2, (il + ir) / 2, ir, l, r, g);
}
}
};